Turbo C nâng cao P13

Giải phương trình vi phân Một phương trình vi phân cấp 1 có thể viết dưới dạng giải được y` = f(x,y) mà ta có thể tìm được hàm y từ đạo hàm của nó | CHƯƠNG 13 GIẢI PHƯƠNG TRÌNH vi PHÂN TOÁN CAUCHY Một phương trình vi phân cấp 1 có thể viết dưói dạng giải được y f x y mà ta có thể tìm được hàm y từ đạo hàm của tại vô số nghiệm thoả mãn phương trình nghiệm phụ thuộc vào một hằng số tuỳ cho trước giá trị ban đầu của y là yo tại giá trị đầu xo ta nhận được một nghiệm riêng của phương toán Cauchy hay bài toán có điều kiện đầu tóm lại như sau cho x sao cho b x a tìm y x thoả mãn điều kiện Jy x f x y 1 y a a Người ta chứng minh rằng bài toán này có một nghiệm duy nhất nếu f thoả mãn điều kiện Lipschitz f x y1 - f x y2 L IY1-y2 vói L là một hằng số dương. Người ta cũng chứng minh rằng nếu f y đạo hàm của f theo y là liên tục và bị chặn thì f thoả mãn điều kiện Lipschitz. Một cách tổng quát hơn người ta định nghĩa hệ phương trình bậc 1 y1 fi x yfy2 - yn Ï2 f2 x Y1 y2 - yn yn fn x yi y2 - yn Ta phải tìm nghiệm y1 y2 . yn sao cho Y x f x Y Y a a í . A y y2 vói r fl Ì f2 r ï y1 y Y F Y y . 7 f n 7 Yn . 7 Nếu phương trình vi phân có bậc cao hơn n nghiệm sẽ phụ thuộc vào n hằng số tuỳ nhận được một nghiệm riêng ta phải cho n điều kiện toán sẽ có giá trị đầu nếu với giá trị xo đã cho ta cho y xo y xo y xo . Một phương trình vi phân bậc n có thể đưa về thành một hệ phương trình vi phân cấp dụ nếu ta có phương trình vi phân cấp 2 y f x y y y a a y a p Khi đặt u y và v y ta nhận được hệ phương trình vi phân cấp 1 u v 1 ựv g x u v tới điều kiện đầu u a a và v a p Các phương pháp giải phương trình vi phân được trình bày trong chương này là 211 các phương pháp rời rạc đoạn a b được chia thành n đoạn nhỏ bằng nhau được gọi là các bước tích phân h b - a n. PHÁP EULER VÀ EULER CẢI TIÊN Giả sử ta có phương trình vi phân y x f x y . y a a 1 và cần tìm nghiệm của chia đoạn xo x thành n phần bởi các điểm chia xo x1 x2 . xn x Theo công thức khai triển Taylor một hàm lân cận x ta có y Xi 1 y Xi Xi 1 - Xi y Xi . x1 i-Xi 2y xi X1 1-Xi 3y Xi --------2 ------- .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.