Trường Đại học Bách khoa tp. Hồ Chí Minh Bộ môn Toán Ứng dụng ------------------------------------------------------------------------------------- Giải tích 1 Chương 1: Giới hạn và liên tục : (tiếp theo) • Giảng viên Ts. Đặng Văn Vinh (9/2008) dangvvinh@ .Nội dung --------------------------------------------------------------------------------------------------------------------------- – Giới hạn của hàm số – Hàm số. – Giới hạn của hàm số. – Vô cùng bé, Vô cùng lớn. .1. Hàm số Định nghĩa (hàm hợp) Cho hai hàm g : X Y ; f : Y Z . Khi đó tồn tại hàm hợp f g : X Z . h f g f ( g ( x)) g ( x) x 3; f ( x) x 2 Ví dụ. f g ( x) f ( g ( x) f ( x 3) x 3 2 g f ( x) g ( f ( x)) g ( x ) x 3 2 2 .dụ. ho f ( x) x ; g ( x) 2 x. Tìm các hàm sau và miền b) g f ; c) f f ; d) g g . ác định của nó: a ) f g ; a) f g ( x) 2 x 4 2 x D f g ( , 2] b) g f ( x ) 2 x c ) f f ( x) 4 x d ) g g ( x) 2 2 x Dg f 0, 4 D f f 0, Dg g 2, 2 .Đầu vào Đầu ra .