Đề thi tuyển sinh lớp 10 môn Toán của Sở GD&ĐT Đồng Nai năm 2012 là tư liệu tham khảo hữu ích dành cho các bạn học sinh lớp 9 đang chuẩn bị thi tuyển vào lớp 10. Chúc các bạn thi tốt. | SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 ĐỒNG NAI Khóa ngày : 29 , 30 / 6 / 2012 Môn thi : TOÁN HỌC Thời gian làm bài : 120 phút ( Đề này có 1 trang , 5 câu ) Câu 1 : ( 1,5 điểm ) 1 / Giải phương trình : 7x2 – 8x – 9 = 0 . 2 / Giải hệ phương trình : Câu 2 : ( 2,0 điểm ) 1 / Rút gọn các biểu thức : 2 / Cho x1 ; x2 là hai nghiệm của phương trình : x2 – x – 1 = 0 . Tính : . Câu 3 : ( 1,5 điểm ) Trong mặt phẳng với hệ trục tọa độ Oxy cho các hàm số : y = 3x2 có đồ thị ( P ) ; y = 2x – 3 có đồ thị là ( d ) ; y = kx + n có đồ thị là ( d1 ) với k và n là những số thực . 1 / Vẽ đồ thị ( P ) . 2 / Tìm k và n biết ( d1 ) đi qua điểm T( 1 ; 2 ) và ( d1 ) // ( d ) . Câu 4 : ( 1,5 điểm ) Một thửa đất hình chữ nhật có chu vi bằng 198 m , diện tích bằng 2430 m2 . Tính chiều dài và chiều rộng của thửa đất hình chữ nhật đã cho . Câu 5 : ( 3,5 điểm ) Cho hình vuông ABCD . Lấy điểm E thuộc cạnh BC , với E không trùng B và E không trùng C . Vẽ EF vuông góc với AE , với F thuộc CD . Đường thẳng AF cắt đường thẳng BC tại G . Vẽ đường thẳng a đi qua điểm A và vuông góc với AE , đường thẳng a cắt đường thẳng DE tại điểm H . 1 / Chứng minh . 2 / Chứng minh rằng tứ giác AEGH là tứ giác nội tiếp được đường tròn . 3 / Gọi b là tiếp tuyến của đường tròn ngoại tiếp tam giác AHE tại E , biết b cắt đường trung trực của đoạn thẳng EG tại điểm K . Chứng minh rằng KG là tiếp tuyến của đường tròn ngoại tiếp tam giác AHE . HƯỚNG DẪN GIẢI: Câu 1 : ( 1,5 điểm ) 1 / Giải phương trình : 7x2 – 8x – 9 = 0 ( x1,2 = ) 2 / Giải hệ phương trình : ( x ; y ) = (–1 ; 2 ) Câu 2 : ( 2,0 điểm ) 1 / Rút gọn các biểu thức : 2 / Cho x1 ; x2 là hai nghiệm của phương trình : x2 – x – 1 = 0 . S = ; P = Nên : Câu 3 : ( 1,5 điểm ) 1 / Vẽ đồ thị ( P ) . 2 / ( d1 ) // ( d ) nên k = 2 ; n –3 và đi qua điểm T( 1 ; 2 ) nên x = 1 ; y = 2 . Ta có phương trình : 2 = + n n = 0 Câu 4 : ( 1,5 điểm ) Gọi x ( m ) là chiều dài thửa đất hình chữ nhật ( 49,5 < x < 99 ) Chiều rộng của thửa đất hình chữ nhật là : 99 – x ( m ) Theo đề bài ta có phương trình : x ( x – 99 ) = 2430 Giải được : x1 = 54 ( nhận ) ; x2 = 45 ( loại ) Vậy chiều dài thửa đất hình chữ nhật là 54 ( m ) Chiều rộng của thửa đất hình chữ nhật là : 99 – 54 = 45 ( m ) Câu 5 : ( 3,5 điểm ) 1 / Chứng minh tứ giác AEFD nội tiếp AEF DCE ( g – g ) 2 / Ta có phụ với Ta có phụ với Mà Suy ra tứ giác AEFD nội tiếp đường tròn đường kính HE Gọi I trung điểm của HE I là tâm đường tròn ngoại tiếp tứ giác AEFD cũng là đường tròn ngoại tiếp I nằm trên đường trung trực EG IE = IG Vì K nằm trên đường trung trực EG KE = KG Suy ra IEK = IGK ( c-c-c ) tại G của đường tròn ngoại tiếp KG là tiếp tuyến của đường tròn ngoại tiếp