Bài giảng Toán rời rạc - Chương 4: Đồ thị

Trong bài giảng Toán rời rạc Chương 4 Đồ thị nêu những khái niệm và tính chất cơ bản của đồ thị. Đồ thị vô hướng không có cạnh song song và không có khuyên gọi là đơn đồ thị vô hướng. | TOÁN RỜI RẠC Chương 4 Đồ thị Đồ thị b d a k e h g c Những khái niệm và tính chất cơ bản Định nghĩa đồ thị Định nghĩa 1. Đồ thị vô hướng G = (V, E) gồm: i) V là tập hợp khác rỗng mà các phần tử của nó gọi là đỉnh (vertex) của G. ii) E là tập hợp gồm các cặp không sắp thứ tự của hai phần tử của V gọi là các cạnh của G. b d a k e h g c Ta nói cạnh uv nối u với v, cạnh uv kề với u,v. Nếu uv E thì ta nói đỉnh u kề đỉnh v. Hai cạnh nối cùng một cặp đỉnh gọi là hai cạnh song song. Cạnh uu có hai đầu mút trùng nhau gọi là một khuyên. Chú ý Những khái niệm và tính chất cơ bản Định nghĩa 2. Đồ thị vô hướng không có cạnh song song và không có khuyên gọi là đơn đồ thị vô hướng. Định nghĩa 3. Đồ thị vô hướng cho phép có cạnh song song nhưng không có khuyên gọi là đa đồ thị vô hướng. Định nghĩa 4. Đồ thị vô hướng cho phép có cạnh song song và có khuyên gọi là giả đồ thị Những khái niệm và tính chất cơ bản b d a k e h g c a b c d b c a d San Francisco Denver Los Angeles New York Chicago Washington Detroit Những khái niệm và tính chất cơ bản San Francisco Denver Los Angeles New York Chicago Washington Detroit Những khái niệm và tính chất cơ bản San Francisco Denver Los Angeles New York Chicago Washington Detroit Những khái niệm và tính chất cơ bản Định nghĩa 5 Đa đồ thị có hướng G =(V,E) gồm: i) V là tập hợp khác rỗng mà các phần tử của nó gọi là đỉnh của G. ii) E là đa tập hợp gồm các cặp có sắp thứ tự của hai đỉnh. Mỗi phần tử của E được gọi là một cung (cạnh) của G. Ký hiệu uv. Ta nói cung uv đi từ u đến v, cung uv kề với u,v Những khái niệm và tính chất cơ bản b c a d a b c d Nếu uv là một cung thì ta nói: Đỉnh u và v kề nhau. Đỉnh u gọi là đỉnh đầu (gốc), đỉnh v là đỉnh cuối (ngọn) của cung uv. Đỉnh v là đỉnh sau của đỉnh u. Hai cung có cùng gốc và ngọn gọi là cung song song. Cung có điểm gốc và ngọn trùng nhau gọi là khuyên. Chú ý Những khái niệm và tính chất cơ bản Những khái niệm và tính chất cơ bản Định nghĩa | TOÁN RỜI RẠC Chương 4 Đồ thị Đồ thị b d a k e h g c Những khái niệm và tính chất cơ bản Định nghĩa đồ thị Định nghĩa 1. Đồ thị vô hướng G = (V, E) gồm: i) V là tập hợp khác rỗng mà các phần tử của nó gọi là đỉnh (vertex) của G. ii) E là tập hợp gồm các cặp không sắp thứ tự của hai phần tử của V gọi là các cạnh của G. b d a k e h g c Ta nói cạnh uv nối u với v, cạnh uv kề với u,v. Nếu uv E thì ta nói đỉnh u kề đỉnh v. Hai cạnh nối cùng một cặp đỉnh gọi là hai cạnh song song. Cạnh uu có hai đầu mút trùng nhau gọi là một khuyên. Chú ý Những khái niệm và tính chất cơ bản Định nghĩa 2. Đồ thị vô hướng không có cạnh song song và không có khuyên gọi là đơn đồ thị vô hướng. Định nghĩa 3. Đồ thị vô hướng cho phép có cạnh song song nhưng không có khuyên gọi là đa đồ thị vô hướng. Định nghĩa 4. Đồ thị vô hướng cho phép có cạnh song song và có khuyên gọi là giả đồ thị Những khái niệm và tính chất cơ bản b d a k e h g c a b c d b c a d San Francisco Denver Los .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.