Bài giảng Giải tích 2: Chương 5.2 - Nguyễn Thị Xuân Anh

Bài giảng Giải tích 2: Chương - Chuỗi lũy thừa có nội dung trình bày về chuỗi lũy thừa - miền hội tụ, chuỗi lũy thừa – bán kính hội tụ, miền hội tụ; chuỗi lũy thừa – tính tổng chuỗi, chuỗi Taylor - Maclaurint. | §2. Chuỗi lũy thừa – Miền hội tụ Chuỗi lũy thừa là chuỗi có dạng Số hạng tổng quát un(x)=an(x-x0)n (1) hoặc un(x)=anxn (2) phụ thuộc vào n và biến x, là 1 hàm lũy thừa theo x hoặc (x-x0). a0, a1, a2, là hằng số Ta có thể đặt X=x-x0 và đưa dạng (1) về thành dạng (2) nên ta chỉ viết các kết quả sau đây với số hạng tổng quát dạng (2) §2. Chuỗi lũy thừa – Miền hội tụ Miền HT của chuỗi lũy thừa là tập D nếu chuỗi số HT Ví dụ: Chuỗi Là chuỗi cấp số nhân nên HT khi và chỉ khi |x|1: Chuỗi HT vì |x|>1 Vậy MHT là (-∞,-1)U(1,+ ∞) Cho §2. Chuỗi lũy thừa – Bán kính HT, Miền HT Tổng quát: giả sử chuỗi lũy thừa HT tại x=x0, Nếu |x||x1| Bán kính hội tụ (BKHT): HT với mọi x: |x|0 sao cho chuỗi Hệ quả: Nếu chuỗi PK tại x1 PK với mọi x: |x|>R được gọi là BKHT của chuỗi §2. Chuỗi lũy thừa – Bán kính HT, Miền HT Cách tìm BKHT của chuỗi lũy thừa Đặt: Thì BKHT là Đặt: Cách tìm MHT của chuỗi lũy thừa Sau khi tìm xong BKHT, ta chỉ còn xét sự HT của chuỗi tại 2 điểm x=R và x=-R nữa là có kết luận §2. Chuỗi lũy thừa – Bán kính HT, Miền HT Ví dụ: Tìm BKHT, MHT của các chuỗi sau 1. Với chuỗi lũy thừa này, ta đang có an=nn: BKHT R=0 tức là MHT chỉ gồm 1 điểm duy nhất {0} 2. Khi x=2: là chuỗi số dương HT Khi x=-2: là chuỗi HTTĐ Vậy MHT [-2,2] §2. Chuỗi lũy thừa – Bán kính HT, Miền HT Ví dụ: Tìm BKHT, MHT của các chuỗi: 1. Chuỗi lũy thừa với → R=5 Khi x=± 5: Là 2 chuỗi PK theo đkccsht BKHT R=5, MHT là (-5,5) Chú ý: Khi chuỗi số dương PK theo đkccsht thì chuỗi đan dấu tương ứng cũng PK | §2. Chuỗi lũy thừa – Miền hội tụ Chuỗi lũy thừa là chuỗi có dạng Số hạng tổng quát un(x)=an(x-x0)n (1) hoặc un(x)=anxn (2) phụ thuộc vào n và biến x, là 1 hàm lũy thừa theo x hoặc (x-x0). a0, a1, a2, là hằng số Ta có thể đặt X=x-x0 và đưa dạng (1) về thành dạng (2) nên ta chỉ viết các kết quả sau đây với số hạng tổng quát dạng (2) §2. Chuỗi lũy thừa – Miền hội tụ Miền HT của chuỗi lũy thừa là tập D nếu chuỗi số HT Ví dụ: Chuỗi Là chuỗi cấp số nhân nên HT khi và chỉ khi |x|1: Chuỗi HT vì |x|>1 Vậy MHT là (-∞,-1)U(1,+ ∞) Cho §2. Chuỗi lũy thừa – Bán kính HT, Miền HT Tổng quát: giả sử chuỗi lũy thừa HT tại x=x0, Nếu |x|<|x0| thì chuỗi HT Suy ra chuỗi ban đầu HTTĐ theo t/c so sánh. Vậy ta chứng minh xong định lý Abel sau đây. tức là chuỗi số HT. Theo đkccsht ta được Biến đổi số hạng tổng quát của chuỗi: .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.