Bài giảng Đồ họa máy tính: Phép chiếu (projection)

Bài giảng Đồ họa máy tính: phép chiếu (projection) trình bày kế hoạch trình chiếu, mặt phẳng chiếu, phép chiếu song song, phép chiếu vuông góc, các trường hợp đặc biệt (cont) và một số nội dung khác. | Projection Phép chiếu 13 August 2001 Chris Weigle - Comp 136 Plane Projection Để hiển thị các đối tượng 3D trong thiết bị hiển thị 2D. Trong phép chiếu phẳng, mỗi điểm đối tượng – object point – được chiếu trên mặt phẳng ảnh – picture plane (view plane), chúng ta được một điểm ảnh – picture point. u2 u1 r0 r object point r’ picture point Projection line Picture plane u Mặt phẳng chiếu Mặt phẳng chiếu có gốc r0 và 2 vectơ đơn vị u1 và u2 Với điểm r’ trên mặt phẳng chiếu, ta có vectơ (r’ – r0) được phân tích theo 2 vectơ đơn vị: r’ – r0 = x’ u1 + y’ u2 Khi đó (x’, y’) là tọa độ của r’ trên mặt phẳng chiếu. u2 u1 r0 r’ x’u1 y’u2 Plane Parallel Projection Phép chiếu song song Các đường thẳng chiếu song song với nhau. u2 u1 r0 r r’ Projection line u u Plane Parallel Projection (cont) Mỗi điểm r được chiếu song song theo phương u vào mặt phẳng chiếu, ta được điểm ảnh r’: ! z’ : r’ = r – z’u r’ là điểm ảnh nằm trên mặt phẳng chiếu: ! x’, y’ : r’ = r0 + x’u1 + y’u2 Do đó: r – z’u = r0 + x’u1 + y’u2 (1) u2 u1 r0 r r’ z’u x’u1 y’u2 Plane Parallel Projection Xác định z’ Xác định z’ bằng cách nhân vô hướng 2 vế của (1) cho u1 x u2: (r – z’u) . (u1 x u2) = (r0 + x’u1 + y’u2) . (u1 x u2) z’u . (u1 x u2) = (r – r0) . (u1 x u2) u2 u1 r0 r r’ z’u x’u1 y’u2 Vector Product – Tích hữu hướng a x b là vectơ vuông góc với vectơ a và b: Tính chất: Mối liên giữa tích vô hướng và hữu hướng: Plane Parallel Projection Xác định x’, y’ Tương tự, xác định x’, y’ bằng cách nhân vô hướng 2 vế của (1) lần lượt cho u2 x u và u1x u : (r – z’u) . (u2 x u) = (r0 + x’u1 + y’u2) . (u2 x u) (r – z’u) . (u1 x u) = (r0 + x’u1 + y’u2) . (u1 x u) và u2 u1 r0 r r’ z’u x’u1 y’u2 Plane Parallel Projection Phép chiếu vuông góc Trong hầu hết các trường hợp, mặt phẳng chiếu được chọn là vuông góc với đường thẳng chiếu, vậy: u = u1 x u2 Do đó, Plane Parallel Projection Phép chiếu vuông góc - Dạng ma trận Plane Perspective Projection Phép chiếu phối cảnh Các đường thẳng chiếu hội tụ về một điểm chung rv, gọi là điểm quan sát - eyepoint. Vật thể càng xa thì càng nhỏ. u2 u1 r0 r r’ rv Plane Perspective Projection Xác định x’, y’, z’ Điểm ảnh r’ nằm trên mặt phẳng chiếu: ! x’, y’ : r’ = r0 + x’ u1 + y’ u2 Điểm ảnh r’ thuộc đường thẳng chiếu nối đối tượng r và điểm quan sát rv: ! z’ : r’ = z’ r + (1-z’) rv Do đó, r0 + x’ u1 + y’ u2 = z’ r + (1-z’) rv r0 – rv + x’ u1 + y’ u2 = z’ (r – rv) (2) u2 u1 r0 r r’ x’u1 y’u2 rv Plane Perspective Projection Xác định x’, y’, z’ Xác định x’, y’, z’ bằng cách nhân vô hướng 2 vế của (2) lần lượt cho u2 x (r-rv), u1 x (r-rv) và u1 x u2: u2 u1 r0 r r’ x’u1 y’u2 rv Plane Perspective Projection Trường hợp đặc biệt Khi đường nối điểm quan sát và gốc của mặt phẳng chiếu vuông góc với mặt phẳng chiếu: rv = r0 + d u với u = u1 x u2 u2 u1 r0 r r’ x’u1 y’u2 rv du Plane Perspective Projection Trường hợp đặc biệt (cont) Khi mặt phẳng chiếu là Oxy: r0 = (0,0,0) u1 = (1,0,0) u2 = (0,1,0) u = (0,0,1) u2 u1 r0 r r’ x’u1 y’u2 rv du

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.