Lời giải đề thi thử Đại học 2011 môn Toán - Đề số 03

Lời giải đề thi thử Đại học 2011 môn Toán - Đề số 03 dành cho học sinh hệ Trung học phổ thông ôn thi tốt nghiệp và ôn thi Đại học - Cao đẳng tham khảo ôn tập và củng cố lại kiến thức. | DIỄN ĐÀN LỜI GIẢI ĐỀ THI THỬ ĐẠI HỌC 2011 Môn thi : Toán Đề số: 03 Câu I. 1) (1 điểm) ———————————————————————————————— Cho hàm số y = x4 − 2mx2 + 2 (Cm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1 Lời giải: m = 1 hàm số y = x4 − 2x2 + 2 có TXĐ là D = R y = 4x3 − 4x = 4x x2 − 1 Đồ thị x=0 ⇒y=2 4 Nên y = 0 ⇔ x = −1 ⇒ y = 1 x=1 ⇒y=1 3 y > 0 ⇔ −1 0 (1) y = x4 − 2mx2 + 2 (2) Với ĐK đó hàm số có các điểm cực trị với toạ độ là nghiệm HPT 3 x − mx = 0 (3) 3 − mx) − mx2 + 2 = −mx2 + 2 (4) (do (3)) Ta có (2) ⇔ y = x(x 2−y ⇒ x2 = (5) m Từ (4) có y2 = m2 x4 − 4mx2 + 4 = m2 x(x3 − mx) + m(m2 − 4)x2 + 4 = m(m2 − 4)x2 + 4(do (3)) Hay y2 = (m2 − 4)(2 − y) + 4 (6) (do (5)) 1 Từ (5)&(6) ta thu được x2 + y2 = m2 + − 4 (2 − y) + 4(7) m Như vậy theo suy luận trên thì toạ độ các điểm cực trị cùng thoả mãn PT (7) , mà (7) là PT của đường tròn . 1 Do đó đường tròn (T ) qua các điểm cực trị của đồ thị hàm số có PT x2 + y2 = m2 + − 4 (2 − y) + 4 m 3 9 9 81 1 1 Bây giờ (T ) qua D( ; ) ⇔ + = m2 + − 4 +4 5 5 25 25 m 5 √ 3 − 2m + 1 = 0 ⇔ (m − 1)(m2 + m − 1) = 0 ⇔ m = 1; m = −1 ± 5 ⇔m 2 √ −1 + 5 Kết hợp ĐK m > 0 ta thu được các giá trị cần tìm là m = 1 và m = 2 Cách 2. Hàm số có y = .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.