Hãy tham khảo Đề thi học sinh giỏi cấp huyện môn Toán học lớp 8 để giúp các em biết thêm cấu trúc đề thi như thế nào, rèn luyện kỹ năng giải bài tập và có thêm tư liệu tham khảo chuẩn bị cho kì thi sắp tới đạt điểm tốt hơn. | NGUYỄN LỘC VĂN HÀ Đề số 5 ĐỀ CHÍNH THỨC ĐỀ THI CHỌN HỌC SINH GIỎI HUYỆN NĂM HỌC 2012-2013 M«n To¸n líp 8 Thêi gian lµm bµi 120 phót 1 4a 2b 2 a2 1 Bài 1. Cho biÓu thøc: A 3 : 2a b 2a b 2a a 2 b a 3b ab a a. Rút gọn A b. Tính giá trị của A biết 4a2 + b2 = 5ab và a > b > 0 Bài 2 a) Cho a + b = 1. Tính giá trị biểu thức: M = 2(a3 + b3) – 3(a2 + b2) b) Tìm x,y,z thỏa mãn phương trình sau : 9x2 + y2 + 2z2 – 18x + 4z - 6y + 20 = 0. c) Cho a , b , c là 3 cạnh của một tam giác . Chứng minh rằng : A= a b c 3 b c a a c b a b c Bài 3 Cho tam giác ABC, ba đường phân giác AN, BM, CP cắt nhau tại O. Ba cạnh AB, BC, CA tỉ lệ với 4,7,5 a) Tính NC biết BC = 18 cm b) Tính AC biết MC - MA = 3cm c) Chứng minh AP BN CM . . 1 PB NC MA Câu 4 ( 3,5 điểm): Cho hình vuông ABCD. Qua A kẻ hai đường thẳng vuông góc với nhau lần lượt cắt BC tai P và R, cắt CD tại Q và S. 1, Chứng minh AQR và APS là các tam giác cân. 2, QR cắt PS tại H; M, N là trung điểm của QR và PS . Chứng minh tứ giác AMHN là hình chữ nhật. 3, Chứng minh P là trực tâm SQR. 4, MN là trung trực của AC. 5, Chứng minh bốn điểm M, B, N, D thẳng .