Báo cáo Kết cấu - Công nghệ xây dựng: Toán vỏ thoải cong hai chiều dương, mặt bằng hình chữ nhật kê bốn góc bằng phương pháp số xấp xỉ liên tiếp (XXLT)

Báo cáo Kết cấu - Công nghệ xây dựng: Toán vỏ thoải cong hai chiều dương, mặt bằng hình chữ nhật kê bốn góc bằng phương pháp số xấp xỉ liên tiếp (XXLT) này giới thiệu phương pháp XXLT, được phát triển trên cơ sở phương pháp sai phân hữu hạn, để tính mái vỏ thoải cong hai chiều mặt bằng hình chữ nhật chịu tải trọng tác dụng phân bố đều. | KẾT CẤU - CÔNG NGHỆ XÂY DỰNG TOÁN VỎ THOẢI CONG HAI CHIỀU DƯƠNG, MẶT BẰNG HÌNH CHỮ NHẬT KÊ BỐN GÓC BẰNG PHƯƠNG PHÁP SỐ XẤP XỈ LIÊN TIẾP (XXLT) TS. NGUYỄN HIỆP ĐỒNG Đại học Kiến trúc Hà Nội Tổng quan: Ngày nay, việc ứng dụng phương pháp số để tính toán các công trình trong xây dựng ngày càng phổ biến và đa dạng. Có nhiều phương pháp số khác nhau như: phương pháp phần tử hữu hạn (PTHH), phương pháp sai phân hữu hạn (SPHH), phương pháp xấp xỉ liên tiếp (XXLT), Mỗi phương pháp đều có những ưu điểm và nhược điểm riêng, nhưng phổ biến hơn cả là phương pháp PTHH. Bài báo này giới thiệu phương pháp XXLT, được phát triển trên cơ sở phương pháp sai phân hữu hạn, để tính mái vỏ thoải cong hai chiều mặt bằng hình chữ nhật chịu tải trọng tác dụng phân bố đều. Ưu điểm của phương pháp XXLT là : thuật toán tương đối đơn giản, không cần thiết lập ma trận độ cứng nên khi tính toán không chiếm nhiều bộ nhớ trong máy tính, kết quả có độ chính xác đáng tin cậy, đặc biệt là có thể tính toán với nhiều điều kiện biên khác nhau và với các dạng tải trọng khác nhau, kể cả tải trọng cục bộ [1], [3],[ 5]. Từ khóa: Phương pháp số, xấp xỉ liên tiếp, mái vỏ mỏng thoải, phương trình vi phân. 1. Ứng dụng phương pháp số xấp xỉ liên tiếp (XXLT) để tính mái vỏ thoải cong 2 chiều mặt bằng hình chữ nhật pháp XXLT Phương pháp XXLT là phương pháp số được phát triển trên cơ sở phương pháp sai phân hữu hạn do GS. TSKH Gabbasov R. F. người Nga đã nghiên cứu và phát triển thành công vào những thập niên 80 của thế kỷ XX. Bản chất của phương pháp này là giải phương trình vi phân bậc 2 tổng quát có dạng như sau: 2 2 2 n 2 i 2 i 2 i i i i i i i i p 2 2 i 1 2 2 trong đó: и i - các ẩn; , , , , , i, i, i, i, i - các tham số. (1) Để giải phương trình vi phân tổng quát (1) GS. TSKH Gabbasov . đã sử dụng phương pháp chia lưới và qua đó thiết lập nên mối quan hệ giữa các điểm, từ đó rút

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.