Tài"Luyện thi Đại học môn Toán: Phương pháp thế giải hệ phương trình-P1 - thầy Đặng Việt Hùng" cung cấp các bài tập ví dụ kèm theo hướng dẫn giải nhằm giúp các bạn kiểm tra, củng cố kiến thức về phương pháp thế giải hệ phương trình. . | LUY N THI I H C MÔN TOÁN – Th y Hùng Chuyên PT – BPT và H PT 11. PP TH GI I H PHƯƠNG TRÌNH – P1 Th y ng Vi t Hùng (1) 2 x + 3 y = 5 Ví d 1: Gi i h phương trình 2 2 (2) 3x − y + 2 y = 4 Hư ng d n gi i: T (1) ta có x = 5 − 3y 5 − 3y 2 th vào (2) ta ư c 3 − y + 2y − 4 = 0 2 2 2 ⇔ 3(25 − 30 y + 9 y 2 ) − 4 y 2 + 8 y − 16 ⇔ 23 y 2 − 82 y + 59 = 0 ⇔ y = 1, y = 59 23 31 59 V y t p nghi m c a h phương trình là (1;1) ; − ; 23 23 3 2 2 4 (1) x + 2x y + x y = 2x + 9 Ví d 2: 2 (2) x + 2 xy = 6 x + 6 Hư ng d n gi i: D th y x = 0 không th a mãn (2) 6 x + 6 − x2 2 6 x + 6 − x2 6 x + 6 − x2 x ≠ 0, (2) ⇔ y = th vào (1) ta ư c x 4 + 2 x3 + x = 2x + 9 2x 2x 2x x = 0 (6 x + 6 − x 2 ) 2 ⇔ x + x (6 x + 6 − x ) + = 2 x + 9 ⇔ x( x + 4)3 = 0 ⇔ 4 x = −4 4 2 2 2 17 Do x ≠ 0 nên h phương trình có nghi m duy nh t −4; 4 1 1 + 2− = 2 (1) y x Ví d 3: Gi i h phương trình 1 + 2− 1 = 2 (2) y x Hư ng d n gi i: 1 1 K: x ≥ , y ≥ . 2 2 1 1 1 1 Tr v hai pt ta ư c − + 2− − 2− = 0 y x x y =0 1 1 xy 2 − + 2 − y x 1 1 TH1: y − x = 0 ⇔ y = x th vào (1) ta ư c + 2− = 2 x x 2 − t ≥ 0 t ≤ 2 1 t t= , t > 0 ta ư c 2 − t 2 = 2 − t ⇔ ⇔ 2 ⇔ t = 1 ⇒ x = 1 và y = 1 2 2 2 − t = 4 − 4t + t t − 2t + 1 = 0 x xy ⇔ 1 1 − 2− y− x y x + =0⇔ xy 1 1 2− + 2− y x 2− ( y−x x+ y ) + y−x Tham gia tr n v n khóa LT H và Luy n gi i t 8 i m Toán tr lên! LUY N THI I H C MÔN TOÁN – Th y Hùng Chuyên PT – BPT và H PT = 0 . Trư ng h p này vô nghi m do K. 1 1 xy 2 − + 2 − y x V y h có nghi m duy nh t (1; 1) 1 3x 1 + =2 x+ y Ví d 4: Gi i h phương trình 7 y 1 − 1 = 4 2 x+ y Hư ng d n gi i: Phân tích. Các bi u th c trong ngo c có d ng a + b và a – b nên ta chia hai v pt th nh t cho hai v pt th hai cho 7 y . L i gi i. K: x ≥ 0, y ≥ 0, x + y ≠ 0 . D th y x = 0 ho c y = 0 không th a mãn h pt. V y x > 0, y > 0 TH2: xy ( 1 x+ y ) + 1 3x và chia 1 2 4 2 2 2 + + =1 2