"Đề ôn tập Toán 11 HK 2 (Đề số 13)" có cấu trúc gồm 2 phần: phần 1 có 4 câu hỏi bài tập, phần 2 được chọn theo chương trình chuẩn hoặc chương trình nâng cao. Thời gian làm bài trong vòng 90 phút, ngoài ra tài liệu còn kèm theo đáp án hướng dẫn giải nhằm giúp các bạn kiểm tra củng cố kiến thức. !. | Đề số 13 ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học Môn TOÁN Lớp 11 Thời gian làm bài 90 phút Bài 1: Tính các giới hạn sau: a) b) Bài 2: Chứng minh rằng phương trình luôn có nghiệm với mọi m. Bài 3: Tìm a để hàm số liên tục tại x = 1. Bài 4: Tính đạo hàm của các hàm số: a) b) Bài 5: Cho đường cong (C): . Viết phương trình tiếp tuyến của (C): a) Tại điểm có hoành độ bằng 2. b) Biết tiếp tuyến vuông góc đường thẳng . Bài 6: Cho hình chóp có đáy ABCD là hình thoi tâm O cạnh a, , , . a) Chứng minh: vuông và SC vuông góc với BD. b) Chứng minh: c) Tính khoảng cách giữa SA và BD. --------------------Hết------------------- Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . Đề số 13 ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học Môn TOÁN Lớp 11 Thời gian làm bài 90 phút Bài 1: a) b) Ta có Bài 2: Xét hàm số f(x) liên tục trên R. Nếu m = 0 thì phuơng trình có nghiệm x = 0 Nếu m thì phương trình luôn có ít nhát một nghiệm thuộc (0; m) hoặc (m; 0). Vậy phương trình luôn có nghiệm. Bài 3: Nếu a = –3 thì và nên hàm số không liên tục tại x = 1 Nếu a –3 thì , nhưng nên hàm só không liên tục tại x = 1. Vậy không có giá trị nào của a để hàm số liên tục tại x = 1. Bài 4: a) b) Bài 5: a) PTTT . b) Vì tiếp tuyến vuông góc với đường thẳng nên tiếp tuyến có hệ số góc là k = 3. Gọi là toạ độ của tiếp điểm Với PTTT: Với PTTT: Bài 6: a) Chứng minh: vuông + . + . tam giác SAC vuông tại S. Chứng minh SC BD BD SO, BD AC BD (SAC) BD SC. b) Chứng minh: Gọi H là trung điểm của SA. HBD vuông tại H DH BH (1) SOA vuông cân tại O, H là trung điểm của SA OH SA (2) SO (ABCD) SO BD, mặt khác AC BD (3) Từ (2) và (3) ta suy ra SA (HBD) SA HD (4) Từ (1) và (4) ta suy ra DH (SAB), mà DH (SAD) nên (SAD) (SAB) Gọi I là trung điểm của SC dễ thấy OI = OH = OB = OD IBD vuông tại I ID BI (5) DSC cân tại D, IS = IC nên ID SC (6) Từ (5) và (6) ta suy ra ID (SBC), mà ID (SCD) nên (SBC) (SCD). c) Tính khoảng cách giữa SA và BD. OH SA, OH BD nên . ============================