Đề thi Olympic Toán sinh viên 2006

Tài liệu tham khảo Đề thi Olympic Toán sinh viên 2006 sẽ giúp bạn thực hành giải các bài toán, phát triển kĩ năng giải bài tập tự luận, đồng thời ôn tập lại những kiến thức để chuẩn bị tốt cho kì thi. | H I TOÁN TRUY N TH NG NĂM 2006 Đ THI OLIMPIC TOÁN Môn thi: Gi i tích Th i gian làm bài: 180’ Câu 1: V i m i n ∈ N, cho un = 4n n4 +2n2 +9 . Đ t Sn = u1 + u2 + . + un . Tìm lim Sn . n→∞ Câu 2: Cho f là m t hàm có đ o hàm liên t c đ n c p 2 trên (a, b). Gi s có M > 0 đ |f (x)| ≤ M v i m i x ∈ (a, b). Ch ng minh r ng f là liên t c đ u trên (a, b). Câu 3: Cho f : − π , π → (−1, 1) là m t hàm s kh vi, f không âm và liên t c. 2 2 Ch ng minh r ng t n t i x0 ∈ − π , π sao cho 2 2 (f (x0 ))2 + (f (x0 ))2 0, ta có |f (x)| ≤ K v i m i x ∈ (a, b). Lúc đó v i x, x ∈ (a, b), d th y |f (x) − f (x )| ≤ K|x − x |. V i ε > 0 tùy ý cho trư c, ch n δ = V y f liên t c đ u trên (a, b). Câu 3: Xét hàm s g(x) = arcsin(f (x)). Khi đó g : − π , π → − π , π liên t c trên 2 2 2 2 − π , π , kh vi trên − π , π . Theo đ nh lý Largange, t n t i x0 ∈ − π , π sao 2 2 2 2 2 2 cho π π g( ) − g(− ) = 2 2 f (x0 ) .π. 1 − (f (x0 ))2 ε . K N u |x − x | < δ thì |f (x) − f (x )| < ε. Theo gi thi t, v trái không âm và v ph i nh hơn π. Vì v y 0≤ f (x0 ) < 1. 1 − (f (x0 ))2 2 T

Bấm vào đây để xem trước nội dung
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.