Nhằm giúp các bạn có thêm tài liệu phục vụ nhu cầu học tập và nghiên cứu về Công nghệ thông tin, nội dung "Bài giảng Cấu trúc dữ liệu - Chương 6: Đồ thị" dưới đây. Nội dung bài giảng cung cấp cho các bạn những kiến thức về đồ thị, khái niệm về đồ thị, biểu diễn đồ thị, phép duyệt đồ thị và tìm đường đi ngắn nhất. Hy vọng đây là tài liệu tham khảo hữu ích cho các bạn. | CHƯƠNG 6 ĐỒ THỊ Chương 6: Đồ thị Định nghĩa và các khái niệm Biểu diễn đồ thị Phép duyệt đồ thị Tìm đường đi ngắn nhất Đồ thị là một cấu trúc rời rạc gồm các đỉnh và các cạnh (vô hướng hoặc có hướng) nối các đỉnh đó . Nhiều bài toán thuộc những lĩnh vực rất khác nhau có thể giải được bằng mô hình đồ thị: biểu diễn sự cạnh tranh các loài trong một môi trường sinh thái, hai máy tính có được nối với nhau bằng một đường truyền thông hay không. tìm đường đi ngắn nhất giữa hai thành phố, lập lịch thi, phân chia kênh cho các đài truyền hình nghĩa và khái niệm Khi mô hình hoá bằng đồ thị: đỉnh biểu thị các đối tượng được xem xét (người, tổ chức, địa danh,.), cạnh đồ thị là những đoạn thẳng (hoặc cong) hay những mũi tên nối một số điểm với nhau, tượng trưng cho một quan hệ nào đó giữa các đối tượng. Các loại đồ thị : Một đơn đồ thị G = (V, E) gồm một tập khác rỗng V mà các phần tử của nó gọi là các đỉnh và một tập E là các cạnh gồm các cặp không có thứ tự . | CHƯƠNG 6 ĐỒ THỊ Chương 6: Đồ thị Định nghĩa và các khái niệm Biểu diễn đồ thị Phép duyệt đồ thị Tìm đường đi ngắn nhất Đồ thị là một cấu trúc rời rạc gồm các đỉnh và các cạnh (vô hướng hoặc có hướng) nối các đỉnh đó . Nhiều bài toán thuộc những lĩnh vực rất khác nhau có thể giải được bằng mô hình đồ thị: biểu diễn sự cạnh tranh các loài trong một môi trường sinh thái, hai máy tính có được nối với nhau bằng một đường truyền thông hay không. tìm đường đi ngắn nhất giữa hai thành phố, lập lịch thi, phân chia kênh cho các đài truyền hình nghĩa và khái niệm Khi mô hình hoá bằng đồ thị: đỉnh biểu thị các đối tượng được xem xét (người, tổ chức, địa danh,.), cạnh đồ thị là những đoạn thẳng (hoặc cong) hay những mũi tên nối một số điểm với nhau, tượng trưng cho một quan hệ nào đó giữa các đối tượng. Các loại đồ thị : Một đơn đồ thị G = (V, E) gồm một tập khác rỗng V mà các phần tử của nó gọi là các đỉnh và một tập E là các cạnh gồm các cặp không có thứ tự của các đỉnh phân biệt. nghĩa và khái niệm Một đơn đồ thị có hướng G = (V, E) gồm một tập khác rỗng V mà các phần tử của nó gọi là các đỉnh và một tập E các cặp có thứ tự gồm 2 phần tử khác nhau của V gọi là các cung. Một đa đồ thị G = (V, E) giống như đơn đồ thị, có thể có cạnh bội (có nhiều hơn hai cạnh tương ứng với một cặp đỉnh) và khuyên (cạnh nối đỉnh với chính nó). nghĩa và khái niệm v3 v4 v5 v6 v1 v2 nghĩa và khái niệm Các thuật ngữ về đồ thị : Hai đỉnh u và v trong đồ thị (vô hướng) G=(V,E) được gọi là liền kề nếu (u,v) E. Nếu e = (u,v) thì e gọi là cạnh liên thuộc với các đỉnh u và v. Cạnh e cũng được gọi là cạnh nối các đỉnh u và v. Các đỉnh u và v gọi là các điểm đầu mút của cạnh e. Bậc của đỉnh v trong đồ thị G=(V,E), ký hiệu deg(v), là số các cạnh liên thuộc với nó. Khuyên tại một đỉnh được tính hai lần cho bậc của nó. Đỉnh v gọi là đỉnh treo nếu deg(v)=1 và gọi là đỉnh cô lập nếu deg(v)=0 nghĩa và khái niệm v1 v2 v3 v4 .