Lecture Molecular biology: Chapter 13 - Robert F. Weaver

In Chapter 13, we will look at the crucial relationship among activators, chromatin structure, and gene activity. This chapter presents the following content: Histones, nucleosomes, chromatin structure and gene activity. | Molecular Biology Fourth Edition Chapter 13 Chromatin Structure and Its Effects on Transcription Lecture PowerPoint to accompany Robert F. Weaver Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Histones Eukaryotic cells contain 5 kinds of histones H1 H2A H2B H3 H4 Each histone type isn’t homogenous Gene reiteration Posttranslational modification Source: Panyim and Chalkley, Arch. Biochem. & Biophys. 130, 1969, f. 6A, . 13- Properties of Histones Abundant proteins whose mass in nuclei nearly equals that of DNA Pronounced positive charge at neutral pH Most are well-conserved from one species to another Not single copy genes, repeated many times Some copies are identical Others are quite different H4 has only had 2 variants ever reported 13- Nucleosomes Chromosomes are long, thin molecules that will tangle if not carefully folded Folding occurs in several ways First order of folding is the nucleosome X-ray diffraction . | Molecular Biology Fourth Edition Chapter 13 Chromatin Structure and Its Effects on Transcription Lecture PowerPoint to accompany Robert F. Weaver Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Histones Eukaryotic cells contain 5 kinds of histones H1 H2A H2B H3 H4 Each histone type isn’t homogenous Gene reiteration Posttranslational modification Source: Panyim and Chalkley, Arch. Biochem. & Biophys. 130, 1969, f. 6A, . 13- Properties of Histones Abundant proteins whose mass in nuclei nearly equals that of DNA Pronounced positive charge at neutral pH Most are well-conserved from one species to another Not single copy genes, repeated many times Some copies are identical Others are quite different H4 has only had 2 variants ever reported 13- Nucleosomes Chromosomes are long, thin molecules that will tangle if not carefully folded Folding occurs in several ways First order of folding is the nucleosome X-ray diffraction has shown strong repeats of structure at 100Å intervals This spacing approximates the nucleosome spaced at 110Å intervals 13- Histones in the Nucleosome Chemical cross-linking in solution: H3 to H4 H2A to H2B H3 and H4 exist as a tetramer (H3-H4)2 Chromatin is composed of roughly equal masses of DNA and histones Corresponds to 1 histone octamer per 200 bp of DNA Octamer composed of: 2 each H2A, H2B, H3, H4 1 each H1 13- H1 and Chromatin Treatment of chromatin with trypsin or high salt buffer removes histone H1 This treatment leaves chromatin looking like “beads-on-a-string” The beads named nucleosomes Core histones form a ball with DNA wrapped around the outside DNA on outside minimizes amount of DNA bending H1 also lies on the outside of the nucleosome 13- Nucleosome Structure Central (H3-H4)2 core attached to H2A-H2B dimers Grooves on surface define a left-hand helical ramp – a path for DNA winding DNA winds almost twice around the histone core condensing DNA length by 6- .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.