Mời các bạn cùng tìm hiểu các quy luật phân phối rời rạc cơ bản; các quy luật phân phối liên tục; các định lý giới hạn; các công thức tính gần đúng;. được trình bày cụ thể trong "Bài giảng Chương 4: Các quy luật phân phối xác suất cơ bản". | Chương 4: Các quy luật phân phối xác suất cơ bản §1. Các quy luật phân phối rời rạc cơ bản 1. Phân phối đều rời rạc: X x1 x2 xk P 1/k 1/k .1/k 2. Phân phối không – một A(p): Định nghĩa : X có phân phối A(p) X 0 1 P q p Định lý : X có phân phối A(P) thì E(X) = P, D(X) = 3. Phân phối nhị thức B(n,p): Định nghĩa : Định : Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 4 @Copyright 2010 4. Phân phối siêu bội Bài toán: Cho 1 hộp có N bi trong đó có M bi trắng còn lại là đen. Lấy ngẫu nhiên từ hộp đó ra n bi (không hoàn lại), n không lớn hơn M và N-M. Hãy lập bảng phân phối xác suất của X là số bi trắng lấy được. Giải: Định nghĩa : Phân phối nói trên được gọi là phân phối siêu bội H(N,M,n) Định lý : Giả sử Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 4 @Copyright 2010 Ghi nhớ: lấy bi có hoàn lại: phân phối nhị thức lấy bi không hoàn lại: phân phối siêu bội 5. Phân phối Poisson P(a),a>0: Định nghĩa : Định lý : X có phân phối P(a) thì E(X) = D(X) = a Ví dụ : Giả sử X có phân phối P(8). Khi ấy: P(X=6) = 0,122138 (cột 8, hàng 6 bảng phân phối Poisson) (cột 8, hàng 12 bảng giá trị hàm ) Chú ý: Nếu gọi X là số người ngẫu nhiên sử dụng 1 dịch vụ công cộng thì X tuân theo quy luật phân phối Poisson P(a) với a là số người trung bình sử dụng dịch vụ đó. Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 4 @Copyright 2010 Ví dụ : Quan sát trong 20 phút có 10 người vào trạm bưu điện. Tính xác suất trong 10 phút có 4 người vào trạm đó. Giải: Gọi X là số người ngẫu nhiên vào trạm đó trong 10 phút thì X có phân phối P(a), a = 5. Khi ấy: Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 4 @Copyright 2010 §2: Các quy luật phân phối liên tục 1. Phân phối chuẩn Định nghĩa : Định lý : X có phân phối thì E(X) = a, D(X) = Định nghĩa : Đại lượng ngẫu nhiên U có phân phối chuẩn tắc N(0,1) nếu: (hàm mật độ Gauss). Định lý : U có phân phối N(0,1) thì . | Chương 4: Các quy luật phân phối xác suất cơ bản §1. Các quy luật phân phối rời rạc cơ bản 1. Phân phối đều rời rạc: X x1 x2 xk P 1/k 1/k .1/k 2. Phân phối không – một A(p): Định nghĩa : X có phân phối A(p) X 0 1 P q p Định lý : X có phân phối A(P) thì E(X) = P, D(X) = 3. Phân phối nhị thức B(n,p): Định nghĩa : Định : Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 4 @Copyright 2010 4. Phân phối siêu bội Bài toán: Cho 1 hộp có N bi trong đó có M bi trắng còn lại là đen. Lấy ngẫu nhiên từ hộp đó ra n bi (không hoàn lại), n không lớn hơn M và N-M. Hãy lập bảng phân phối xác suất của X là số bi trắng lấy được. Giải: Định nghĩa : Phân phối nói trên được gọi là phân phối siêu bội H(N,M,n) Định lý : Giả sử Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 4 @Copyright 2010 Ghi nhớ: lấy bi có hoàn lại: phân phối nhị thức lấy bi không hoàn lại: phân phối siêu bội 5. Phân phối Poisson P(a),a>0: Định nghĩa : Định lý : X có phân phối P(a) thì E(X)