Tài liệu Ứng dụng tâm tỉ cự giải bài toán cực trị Hình học được biên soạn với các nội dung: Cơ sở phương pháp giải sử dụng tâm tỉ cự, ứng dụng tâm tỉ cự để giải bài toán cực trị Hình học. nội dung chi tiết tài liệu. | NG D NG TÂM T C GI I BÀI TOÁN C C TR HÌNH H C Batigoal– Email: hoangquan9@ B n quy n chuyên c ng thu c v Batigoal. Chuyên ng các b n yêu toán. N u b n nào mu n s thương m i hay dùng cho các cu c thi vi t chuyên vi t ra nh m ph c v d ng cho m c ph i có s ích ng ý c a tác gi . S PHƯƠNG PHÁP GI I S D NG TÂM T C Xu t phát t vi c khai thác bài toán sau: Cho h n i m A1 , A 2 ,., A n và n s k1 , k2 ,., kn mà k1 + k2 + . + kn = k ≠ 0 a,Ch ng minh r ng có duy nh t m t i m G sao cho: uuur uuuu r uuuu r r k1 GA1 + k2 GA2 + . + kn GAn = 0 i m G như th g i là tâm t c c a h i m Ai , g n v i các h s ki . Trong trư ng h p các h s ki b ng nhau (và do ó có th xem các ki 1), thì G g i là tr ng tâm c a h u b ng i m Ai . b, Ch ng minh r ng n u G là tâm t c nói câu a, thì m i i m O b t kì ta có: uuur 1 uuur uuuu r uuuu r OG = (k1 OA1 + k2 OA2 + . + kn OAn ) k Ch ng minh Batigoal Email:hoangquan9@ uuur uuuu r uuuu r r a,Tacó k1 GA1 + k2 GA2 + . + kn GAn = 0 uuur uuur uuuur uuur uuuur r ⇔ k1 GA1 + k2 (GA1 + A1 A2 ) + . + kn (GA1 + A1 An ) = 0 uuur uuuur uuuur uuuur ⇔ (k1 + k2 + . + kn )GA1 = k2 A2 A1 + k3 A3 A1 + . + kn An A1 uuuur uuuur uuuur uuur k A A + k A A + . + k A A 2 2 1 3 3 1 n n 1 vì k1 + k2 + . + kn = k ≠ 0 ⇔ GA1 = k1 + k2 + . + kn V y i m G xác nh và duy nh t. uuur uuuu r uuuu r r b, V i i m O b t kì , ta có k1 GA1 + k2 GA2 + . + kn GAn = 0 uuuur uuur uuuuu uuur r uuuuu uuur r r ⇔ k1 (OA1 − OG ) + k2 (OA2 − OG ) + . + kn (OAn − OG ) = 0 uuur uuur uuuu r uuuu r ⇔ (k1 + k2 + . + kn )OG = k1 OA1 + k2 OA2 + . + kn OAn uuur uuuu r uuuu r uuur k OA + k OA + . + k OA 1 uuur uuuu r uuuu r n n = (k1 OA1 + k2 OA2 + . + kn OAn ) ( fcm) ⇔ OG = 1 1 2 2 k1 + k2 + . + kn k vì k1 + k2 + . + kn = k ≠ 0 . V y t bài toán này ta có hai k t qu quan tr ng sau: 1. Cho h n i m A1 , A 2 ,., A n và n s k1 , k2 ,., kn mà k1 + k2 + . + kn = k ≠ 0 Khi ó có duy nh t m t i m G sao .