Đề thi tuyển sinh lớp 10 môn Toán năm 2012-2013 - THPT Chuyên Hà Tĩnh gồm các câu hỏi với cấu trúc nhiều dạng bài tập kem theo đáp trả lời sẽ giúp các em nắm được cấu trúc đề thi, cách giải đề thi qua đó xây dựng được cho mình kế hoạch học tập, ôn thi hiệu quả nhất. Để nắm vững hơn nội dung cấu trúc đề thi tài liệu. | SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ TĨNH KỲ THI TUYỂN SINH VÀO LỚP 10 NĂM 2012 TRƯỜNG THPT CHUYÊN HÀ TĨNH Môn thi: Toán (Chung) Thời gian làm bài: 120 phút ———————— . Đề Chính Thức Câu 1 . √ √ √ x+ x 1−x x √ Cho biểu thức: M = 2 + √ 1−2 x−x+ x+1 1− x a) Tìm điều kiện của x để biểu thức M có nghĩa. 2 b) Với giá trị nào của x thì biểu thức P = nhận giá trị là số nguyên. M Câu 2 . Cho phương trình x2 − 2ax + 3a − 5 = 0 (a là tham số). a) Giải phương trình khi a = −1. b) Tìm giá trị của a để phương trình có hai nghiệm x1 , x2 thõa mãn 2x1 + x2 = 0. Câu 3 . a) Cho các số dương x, y thỏa mãn điều kiện x + y ≤ 1. 1 1 + Tìm giá trị nhỏ nhất của biểu thức: P = x(x √ √ + 2y) √ y(y + 2x) b) Giải phương trình: x + 1 + x + 3 = 1 − x + 3 1 − x2 Câu 4 . Cho ba điểm A,B,C thẳng hàng theo thứ tự đó. Gọi (O) là dường tròn đi qua hai diểm B,C sao cho tâm O không thuộc đoạn BC. Từ A kẻ các tiếp tuyến AE, AF tới (O) (E,F là các tiếp điểm). Các điểm I, N theo thứ tự là trung điểm của BC và EF. a) Chứng minh năm điểm A, E, F, I, O thuộc một đường tròn. b) Chứng minh khi (O) thay đổi, tâm đường tròn ngoại tiếp tam giác ONI thuộc một đường thẳng cố định. Câu 5 . Cho các số a, b, c thõa mãn điều kiện 0 ≤ a, b, c ≤ 1. Chứng minh: a3 + b2 + c ≤ 1 + ab + bc + ca. —— Hết .