Tham khảo"Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2013-2014 - ĐH QG Hà Nội" giúp các bạn học sinh có thêm tài liệu tham khảo, chuẩn bị tốt kỳ thi tuyển sinh. Để nắm vững nội dung kiến thức cũng như cấu trúc đề thi nội dung tài liệu. | Chương trình luyện thi lớp 10 chuyên năm 2017 Vững vàng nền tảng, Khai sáng tương lai Môn: Toán học ĐẠI HỌC QUỐC GIA HÀ NỘI ĐỀ THI TUYỂN SINH VÀO LỚP 10 TRƯỜNG THPT CHUYÊN NĂM 2013 MÔN THI: TOÁN ( Cho tất cả các thí sinh). Thời gian làm bài: 120 phút ( không kế thời gian phát đề). Câu I: 1). Giải phương trình 3x 1 2 x 3 2). Giải hệ phương trình: 1 1 9 x y x y 2 1 3 x 1 xy 1 4 2 x xy Câu II: 1). Giả sử a, b, c là cas số thực khác 0 thỏa mãn đẳng thức ( a+b)(b +c)(c+a) = 8abc. Chứng minh rằng: a b c 3 ab bc ac a b b c c a 4 (a b)(b c) (b c)(c a) (c a)( a b) 2). Có bao nhiêu số nguyên dương có 5 chữ số abcde sao cho abc (10d e) chia hết cho101?. Câu III: Cho tam giác nhọn ABC nội tiếp đường tròn (O) với AB < AC. Đường phân giác của góc BAC cắt ( O) tại điểm D khác A. Gọi M là trung điểm của AD và E là điểm đối xứng với D qua tâm O Giả sử đường tròn ngoại tiếp tam giác ABM cắt đoạn thẳng AC tại điểm F khác A. 1) Chứng minh rằng tam giác BDM và tam giác BFC đồng dạng. 2) Chứng minh rằng EF vuông góc với AC. Câu IV: Giả sử a, b, c, d là các số thực dương thỏa mãn điều kiện abc + bcd + cda + dab = 1. Tìm giá trị nhỏ nhất của biểu thức P = 4(a3 + b3 + c3 ) + 9d3. Website: - Bộ phận tư vấn: 098 1821 807 Trang | 1 Chương trình luyện thi lớp 10 chuyên năm 2017 Vững vàng nền tảng, Khai sáng tương lai Môn: Toán học CHƯƠNG TRÌNH LUYỆN THI VÀO LỚP 10 CHUYÊN NĂM 2017 TRÊN HỌC247 - Chương trình luyện thi được xây dựng dành riêng cho học sinh giỏi, các em yêu thích toán và muốn thi vào lớp 10 các trường chuyên. - Nội dung được xây dựng bám sát với đề thi tuyển sinh lớp 10 các trường chuyên của cả nước trong những năm qua. - Đội ngũ giáo viên giảng dạy gồm các thầy nổi tiếng có nhiều năm kinh nghiệm trong việc ôn luyện học sinh giỏi. - Hệ thống bài giảng được biên soạn công phu, tỉ mỉ, phương pháp luyện thi khoa học, hợp lý mang lại kết quả tốt nhất. - Lớp học qua mạng, tương