Tóm tắt luận án Tiến sĩ: Một số nghiên cứu về hệ phương trình g-Navier-Stokes hai chiều trình bày nghiên cứu sự tồn tại, tính duy nhất và dáng điệu tiệm cận của nghiệm yếu của hệ g-Navier-Stokes hai chiều; nghiên cứu sự tồn tại, tính duy nhất, dáng điệu tiệm cận và xấp xỉ nghiệm mạnh của hệ g-Navier-Stokes hai chiều; nghiên cứu sự tồn tại, tính duy nhất và dáng điệu tiệm cận của nghiệm yếu của hệ g-Navier-Stokes khi ngoại lực phụ thuộc trễ vô hạn. | BỘ QUỐC PHÒNG HỌC VIỆN KỸ THUẬT QUÂN SỰ ——————– * ——————— ĐÀO TRỌNG QUYẾT MỘT SỐ NGHIÊN CỨU VỀ HỆ PHƯƠNG TRÌNH g-NAVIER-STOKES HAI CHIỀU Chuyên ngành: Toán ứng dụng Mã số: 62. 46. 01. 12 TÓM TẮT LUẬN ÁN TIẾN SĨ TOÁN HỌC HÀ NỘI - 2013 Công trình được hoàn thành tại Học viện Kỹ thuật Quân sự. Người hướng dẫn khoa học: TS. Cung Thế Anh Phản biện 1: . Đặng Quang Á, Viện Công nghệ thông tin, Viện HLKH Việt Nam. Phản biện 2: . Nguyễn Minh Trí, Viện Toán học, Viện HLKH Việt Nam. Phản biện 3: . Hoàng Quốc Toàn, Trường ĐHKHTN, ĐHQG Hà Nội. Luận án sẽ được bảo vệ trước Hội đồng chấm luận án cấp Học viện họp tại Học viện Kỹ thuật Quân sự vào hồi . giờ . ngày . tháng . năm 2013. Có thể tìm hiểu luận án tại Thư viện Quốc gia, Thư viện Học viện Kỹ thuật Quân sự. MỞ ĐẦU 1. LỊCH SỬ VẤN ĐỀ VÀ LÍ DO CHỌN ĐỀ TÀI Hệ phương trình Navier-Stokes miêu tả dòng chảy của chất lỏng lí tưởng, nhớt, không nén và có dạng sau: ∂u − ν∆u + (u · ∇)u + ∇p = f, ∂t ∇ · u = 0, ở đó u = u(x, t), p = p(x, t) tương ứng là hàm véctơ vận tốc và hàm áp suất cần tìm, ν = const > 0 là hệ số nhớt và f là ngoại lực. Mặc dù được đưa ra lần đầu tiên vào năm 1822, cho đến nay đã có nhiều bài báo và sách chuyên khảo viết về hệ Navier-Stokes, tuy nhiên vấn đề tồn tại nghiệm mạnh toàn cục và tính duy nhất của nghiệm yếu trong trường hợp ba chiều vẫn là thách thức lớn đối với các nhà toán học cũng như vật lí. Vì nhu cầu của Khoa học và Công nghệ mà việc nghiên cứu hệ Navier-Stokes nói riêng và các phương trình, hệ phương trình trong cơ học chất lỏng nói chung ngày càng trở nên thời sự và cấp thiết. Như được đề cập đến trong các cuốn chuyên khảo của R. Temam (1979, 1995) và các bài báo tổng quan gần đây của C. Bardos & B. Nicolaenko (2002) và R. Temam (2000), những vấn đề cơ bản đặt ra khi nghiên cứu các phương trình và hệ phương trình trong cơ học chất lỏng là: • Sự tồn tại, tính duy nhất và tính chính qui của nghiệm: Nghiệm ở đây có thể là nghiệm yếu hoặc nghiệm .