Mời các em tham khảo tài liệu giải bài tập trang 86,87, tài liệu gồm các gợi ý và hướng dẫn giải cho từng bài tập sẽ giúp các em hệ thống lại kiến thức lý thuyết, biết cách phân loại các dạng bài tập. Ngoài ra việc tham khảo tài liệu còn giúp các em biết thêm những phương pháp giải bài tập hiệu quả hơn. | A. Tóm tắt Lý thuyết Hai đường thẳng vuông góc Hình học 7 tập 1 1. Định nghĩa hai đường thẳng vuông góc Hai đường thẳng xx' và yy' cắt nhau. Nếu trong các góc tạo thành có một góc vuông thì hai đường thẳng đó gọi là hai đường thẳng vuông góc và kí hiệu . 2. Vẽ hai đường thẳng vuông góc - Ta thường dùng êke và thước thẳng để vẽ hai đường thẳng vuông góc. - Ta thừa nhận tính chất sau: Tính chất: Có một và chỉ một đường thẳng a' đi qua điểm O cho trước và vuông góc với đường thẳng a cho trước. 3. Đường trung trực của đoạn thẳng Đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng được gọi là đường trung trực của đoạn thẳng ấy. xy là đường trung trực của đoạn thẳng AB. B. Ví dụ minh họa Hai đường thẳng vuông góc Hình học 7 tập 1 Cho đường thẳng xx’ và yy’ cắt nhau tại O và góc xOy vuông. Khi đó các góc yOx’, x’Oy’ và y’Ox cũng là góc vuông. Vì sao? Bài giải: XOY = 900 (gt) Theo tính chất của hai góc kề bù: Y'0X = 1800 - XOY => Y'OX = 1800 -900 = 900 Theo tính chất của hai góc đối đỉnh: X'OY' = XOY = 900 C. Giải bài tập về Hai đường thẳng vuông góc Hình học 7 tập 1 Dưới đây là 6 bài tập về hai đường thẳng vuông góc mời các em cùng tham khảo: Bài 15 trang 86 SGK Hình học 7 tập 1 Bài 16 trang 87 SGK Hình học 7 tập 1 Bài 17 trang 87 SGK Hình học 7 tập 1 Bài 18 trang 87 SGK Hình học 7 tập 1 Bài 19 trang 87 SGK Hình học 7 tập 1 Bài 20 trang 87 SGK Hình học 7 tập 1 Để xem nội dung chi tiết của tài liệu các em vui lòng đăng nhập website và download về máy để tham khảo dễ dàng hơn. Bên cạnh đó, các em có thể xem cách giải bài tập của bài trước và bài tiếp theo: >> Bài trước: Giải bài tập Hai đường thẳng vuông góc SGK Hình học 7 tập 1 >> Bài tiếp theo: Giải bài tập Các góc tạo bởi một đường thẳng cắt hai đường thẳng SGK Hình học 7 tập .