Luận văn "Về sự tồn tại nghiệm của bài toán cân bằng vectơ" trình bày các kết quả nghiên cứu về sự tồn tại nghiệm và tính liên thông của tập nghiệm của bài toán cân bằng vectơ của Bianchi, Hadjisavvas, Schaible (1997) và Gong (2001). . | LỜI CAM ĐOAN Tôi xin cam đoan: (i) Luận văn đã được hoàn thành với sự học tập, nghiên cứu, sưu tầm tài liệu của tôi dưới sự hướng dẫn của Đỗ Văn Lưu. (ii) Luận văn trình bày các kết quả mới đây về tối ưu. Học viên Vy Thanh Hương 1 LỜI CẢM ƠN Trước tiên tôi xin được gửi lời cảm ơn đến tất cả quý Thầy Cô đã giảng dạy trong chương trình Cao học Toán ứng dụng khóa 1 – Trường Đại học Thăng Long, những người đã truyền đạt kiến thức hữu ích về ngành Toán ứng dụng làm cơ sở cho tôi hoàn thành luận văn này. Đặc biệt tôi xin chân thành cảm ơn Thầy giáo . Đỗ Văn Lưu – Giảng viên Trường Đại học Thăng Long. Thầy đã dành nhiều thời gian quý báu tận tình hướng dẫn tôi trong suốt quá trình thực hiện luâ ̣n văn, đồng thời còn là người giúp tôi lĩnh hội được những kiến thức chuyên môn và rèn luyện cho tôi tác phong nghiên cứu khoa học. Qua đây, tôi cũng xin được bày tỏ lòng biết ơn sâu sắc tới gia đình, bạn bè thân thiết là những người luôn sát cánh bên tôi, tạo mọi điều kiện tốt nhất cho tôi, đã nhiệt tình giúp đỡ, chia sẻ, động viên tôi trong suốt quá trình học tập, cũng như khi tôi thực hiện và hoàn thành luâ ̣n văn này. Mặc dù đã rất cố gắng song luâ ̣n văn không khỏi có những thiếu sót, rất mong nhận được ý kiến góp ý của các Thầy giáo, Cô giáo và các anh chị học viên để luâ ̣n văn được hoàn thiện hơn. Phú Thọ, tháng 04 năm 2015 Học viên thực hiên ̣ Vy Thanh Hương 2 Thang Long University Libraty MỤC LỤC Chương 1. SỰ TỒN TẠI NGHIỆM CỦA BÀI TOÁN CÂN BẰNG VECTƠ 6 . Các khái niệm và kết quả bổ trợ 6 . Sự tồn tại nghiệm của bài toán cân bằng vectơ với giả thiết giả đơn điệu. . 14 . Sự tồn tại nghiệm của bài toán cân bằng vectơ với giả thiết tựa đơn điệu. .