Kỳ thi tuyển sinh lớp 10 THPT môn Toán năm 2012-2013 - Sở giáo dục và đào tạo Hà Nội giúp các bạn tổng hợp kiến thức, rèn luyện kỹ năng giải đề bài tập và các kỹ năng cơ bản trong quá trình học tập bộ môn toán cũng như chuẩn bị cho kì thi tuyển sinh sắp tới. | SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT HÀ NỘI Năm học: 2012 – 2013 Môn thi: Toán Ngày thi: 21 tháng 6 năm 2012 Thời gian làm bài: 120 phút Bài I (2,5 điểm) 1) Cho biểu thức . Tính giá trị của A khi x = 36 2) Rút gọn biểu thức (với ) 3) Với các của biểu thức A và B nói trên, hãy tìm các giá trị của x nguyên để giá trị của biểu thức B(A – 1) là số nguyên Bài II (2,0 điểm). Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm chung một công việc trong giờ thì xong. Nếu mỗi người làm một mình thì người thứ nhất hoàn thành công việc trong ít hơn người thứ hai là 2 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao nhiêu thời gian để xong công việc? Bài III (1,5 điểm) 1) Giải hệ phương trình: 2) Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (ẩn x). Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện : Bài IV (3,5 điểm) Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M khác A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB. 1) Chứng minh CBKH là tứ giác nội tiếp. 2) Chứng minh 3) Trên đọan thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C 4) Gọi d là tiếp tuyến của (O) tại điểm A; cho P là điểm nằm trên d sao cho hai điểm P, C nằm trong cùng một nửa mặt phẳng bờ AB và . Chứng minh đường thẳng PB đi qua trung điểm của đoạn thẳng HK Bài V (0,5 điểm). Với x, y là các số dương thỏa mãn điều kiện , tìm giá trị nhỏ nhất của biểu thức: