Tuyển tập Bộ đề thi Violympic Toán lớp 9 năm 2016-2017 tất cả các vòng có đáp án, là tài liệu tham khảo nghiên cứu hay, giúp các em học sinh học tốt, nắm chắc kiến thức căn bản, đặt nền móng vững chắc cho các kì thi Violympic Toán trên mạng, đồng thời cũng là tài liệu để các thầy cô giáo tham khảo ra đề kiểm tra. | ĐỀ THI VIOLYMPIC TOÁN LỚP 9 VÒNG 1 NĂM 2016 - 2017 Bài 1: Vượt chướng ngại vật Câu 1: Giá trị của biểu thức A = biết x² - 4x + 1 = 0 là . Câu 2: Giá trị của x thỏa mãnlà x = . (Nhập kết quả dưới dạng phân số tối giản) Câu 3: Số dương x thỏa mãn |x - 4| = 5 là x = . Câu 4: Số các tự nhiên n thỏa mãn: 5(2 - 3n) + 42 + 3n ≥ 0 là . Câu 5: Tính: Bài 2: Đỉnh núi trí tuệ Câu 1: Điều kiện xác định của phương trìnhlà: A) x # 0; ±1 B) x = ±1 C) x # ±1 D) x # 0 Câu 2: Nếu a += b = 6 a³ - b³ = 0 thì a = . Câu 3: Cho hình thanh ABCD đáy nhỏ AB. Giả sử M, N là trung điểm hai cạnh bên và MN = 5cm. Biết diện tích hình thang là 10cm². Vậy độ dài đường cao của hình thang là: A) 1cm B) 4cm C) 3cm D) 2cm Câu 4: Giá trị của biểu thức A = x³ + y³ + 3x²y + 3xy² với x + y = 5 là A = Câu 5: Tìm m sao cho phương trình (9x + 1)(x - 2m) = (3x + 2)(3x - 5) nhận x = 1 làm nghiệm. Câu 6: Giải bất phương trình 5 - 3x > -10 ta được kết quả là: A) x ≤