This paper introduces a new method of quantification of hedge algebras, which is different from the ordinary method by the fact that an artificial hedge h0 should be added to model the contextdependent semantics of terms. It is aimed to represent the change of the semantics of any term x of length k appeared in the context X(k+1) of terms with the length k+ 1, so the meaning of a term will be changed when its adjacent terms are changed. | T¤p ch½ Tin håc v i·u khiºn håc, , (2012), 346 358 ÀNH L×ÑNG NGÚ NGH A KHO NG CÕA I SÈ GIA TÛ VÎI VI C BÊ SUNG MËT GIA TÛ C BI T∗ NGUY N C T HÇ1 , TR N TH I SÌN1 , PH M NH PHONG2 1 Vi»n Cæng ngh» thæng tin, Vi»n khoa håc v cæng ngh» Vi»t Nam 2 Cæng ty Pr²voir Vi»t Nam Tóm t t. B i b¡o n y tr¼nh b y mët ph÷ìng ph¡p l÷ñng hâa mîi cõa ¤i sè gia tû, kh¡c vîi ph÷ìng ph¡p cô l mët to¡n tû nh¥n t¤o h0 ÷ñc th¶m v o º mæ h¼nh hâa ngú ngh¾a cõa c¡c h¤ng tø phö thuëc ngú c£nh. Möc ½ch cõa ph÷ìng ph¡p mîi l cho ph²p biºu di¹n sü thay êi ngú ngh¾a cõa mët h¤ng tø x câ ë d i k khi xu§t hi»n trong bèi c£nh cõa tªp X(k+1) c¡c h¤ng tø câ ë d i khæng v÷ñt qu¡ k + 1, v¼ vªy þ ngh¾a cõa h¤ng tø s³ bà thay êi khi c¡c h¤ng tø li·n k· thay êi. Do â, khi x trong ngú c£nh X(k) ÷ñc ÷a v o xu§t hi»n trong ngú c£nh X(k+1) th¼ ngú ngh¾a cõa nâ ÷ñc biºu di¹n bði biºu thùc h0 x. Trong nghi¶n cùu n y, mët ¤i sè gia tû AX ∗ ÷ñc mð rëng tø ¤i sè gia tû AX ÷ñc ph¡t triºn º mæ h¼nh hâa ngú ngh¾a phö thuëc ngú c£nh cõa c¡c h¤ng tø cõa AX . C¡c kh¡i ni»m mîi v· ë o t½nh mí, kho£ng t½nh mí v ¡nh x¤ ành l÷ñng ngú ngh¾a kho£ng cõa c¡c h¤ng tø công ÷ñc nghi¶n cùu v giîi thi»u. B i b¡o công ch¿ ra r¬ng c¡c tªp mí h¼nh thang câ thº ÷ñc x¥y düng cho c¡c ùng döng theo mët cì ch¸ h¼nh thùc hâa to¡n håc. Abstract. This paper introduces a new method of quantification of hedge algebras, which is different from the ordinary method by the fact that an artificial hedge h0 should be added to model the contextdependent semantics of terms. It is aimed to represent the change of the semantics of any term x of length k appeared in the context X(k+1) of terms with the length k + 1, so the meaning of a term will be changed when its adjacent terms are changed. Then, when x in the context X(k) is presented in X(k+1) , its semantics is represented by the expression h0 x. In this study, an enlarged hedge algebra AX ∗ of a given hedge algebra AX will be developed to model .