Lecture Data structures and algorithms in Java (6th edition): Chapter 14.1 - Goodrich, Tamassia, Goldwasser

This chapter provides knowledge of BFS. Data structures and algorithms in java provides an introduction to data structures and algorithms, including their design, analysis, and implementation. | Breadth-First Search 3/25/14 16:17 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Breadth-First Search L0 L1 A B C L2 © 2014 Goodrich, Tamassia, Goldwasser E D F Breadth-First Search 1 Breadth-First Search q   q   Breadth-first search (BFS) is a general technique for traversing a graph A BFS traversal of a graph G n   n   n   n   Visits all the vertices and edges of G Determines whether G is connected Computes the connected components of G Computes a spanning forest of G © 2014 Goodrich, Tamassia, Goldwasser q   q   BFS on a graph with n vertices and m edges takes O(n + m ) time BFS can be further extended to solve other graph problems n   n   Breadth-First Search Find and report a path with the minimum number of edges between two given vertices Find a simple cycle, if there is one 2 1 Breadth-First Search 3/25/14 16:17 BFS Algorithm q   The algorithm uses a mechanism for setting and getting “labels” of vertices and edges Algorithm BFS(G) Input graph G Output labeling of the edges and partition of the vertices of G for all u ∈ () setLabel(u, UNEXPLORED) for all e ∈ () setLabel(e, UNEXPLORED) for all v ∈ () if getLabel(v) = UNEXPLORED BFS(G, v) © 2014 Goodrich, Tamassia, Goldwasser Algorithm BFS(G, s) L0 ← new empty sequence (s) setLabel(s, VISITED) i←0 while ¬() Li +1 ← new empty sequence for all v ∈ () for all e ∈ (v) if getLabel(e) = UNEXPLORED w ← opposite(v,e) if getLabel(w) = UNEXPLORED setLabel(e, DISCOVERY) setLabel(w, VISITED) Li +(w) else setLabel(e, CROSS) i ← i +1 Breadth-First Search 3 Java Implementation © 2014 Goodrich, Tamassia, Goldwasser Breadth-First Search 4 2 Breadth-First Search 3/25/14 16:17 Example unexplored vertex visited vertex unexplored edge discovery edge cross .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.