Software is tested to uncover errors that were made inadvertently as it was designed and constructed. But how do you conduct the tests? Should you develop a formal plan for your tests? Should you test the entire program as a whole or run tests only on a small part of it? Should you rerun tests you’ve already conducted as you add new components to a large system? When should you involve the customer? These and many other questions are answered when you develop a software testing strategy. | Chapter 4 Principles that Guide Practice Slide Set to accompany Software Engineering: A Practitioner’s Approach, 7/e by Roger S. Pressman Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman For non-profit educational use only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is prohibited without the express written permission of the author. All copyright information MUST appear if these slides are posted on a website for student use. Software Engineering Knowledge You often hear people say that software development knowledge has a 3-year half-life: half of what you need to know today will be obsolete within 3 years. In the domain of technology-related knowledge, that’s probably about right. But there is another kind of software development knowledge—a kind that I think of as "software engineering principles"—that does not have a three-year . | Chapter 4 Principles that Guide Practice Slide Set to accompany Software Engineering: A Practitioner’s Approach, 7/e by Roger S. Pressman Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman For non-profit educational use only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is prohibited without the express written permission of the author. All copyright information MUST appear if these slides are posted on a website for student use. Software Engineering Knowledge You often hear people say that software development knowledge has a 3-year half-life: half of what you need to know today will be obsolete within 3 years. In the domain of technology-related knowledge, that’s probably about right. But there is another kind of software development knowledge—a kind that I think of as "software engineering principles"—that does not have a three-year half-life. These software engineering principles are likely to serve a professional programmer throughout his or her career. Steve McConnell Principles that Guide Process - I Principle #1. Be agile. Whether the process model you choose is prescriptive or agile, the basic tenets of agile development should govern your approach. Principle #2. Focus on quality at every step. The exit condition for every process activity, action, and task should focus on the quality of the work product that has been produced. Principle #3. Be ready to adapt. Process is not a religious experience and dogma has no place in it. When necessary, adapt your approach to constraints imposed by the problem, the people, and the project itself. Principle #4. Build an effective team. Software engineering process and practice are important, but the bottom line is people. Build a self-organizing team that has mutual trust and respect. Principles that Guide Process - II Principle #5. Establish mechanisms for .