Bài giảng Trí tuệ nhân tạo: Chương 8 cung cấp cho người học các kiến thức:Các khái niệm về máy học, các kỹ thuật học của máy, cây quyết định, mạng neuron, giải thuật di truyền (Genetic),. để nắm chi tiết nội dung của bài giảng. | Chương 8: Máy h c 1 N i d ng Các khái niệm về máy học Các kỹ thuật học của máy Cây quyết định Mạng neuron Giải thuật di truyền (Genetic) 2 H c Máy (Machine Learning) Học (learning) là bất cứ sự thay đổi nào trong một hệ thống cho phép nó tiến hành tốt hơn trong lần thứ hai khi lặp lại cùng một nhiệm vụ hoặc với nhiệm vụ khác từ cùng một quần thể đó. (Herbert Simon) Học liên quan đến vấn đề khái quát hóa từ kinh nghiệm (dữ liệu rèn luyện) => bài toán quy nạp (induction) Vì dữ liệu rèn luyện thường hạn chế, nên thường khái quát hóa theo một số khía cạnh nào đó (heuristic) => tính thiên lệch quy nạp (inductive bias) Có ba tiếp cận học: Các phương pháp học dựa trên ký hiệu (symbol-based): ID3 Tiếp cận kết nối: Các mạng neuron sinh học Tiếp cận di truyền hay tiến hóa: giải thuật genetic 3 Cây quy t đ nh (ID3) Là một giải thuật học đơn giản nhưng thành công Cây quyết định (QĐ) là một cách biểu diễn cho phép chúng ta xác định phân loại của một đối tượng bằng cách kiểm tra giá trị của một số thuộc tính. Giải thuật có: Đầu vào: Một đối tượng hay một tập hợp các thuộc tính mô tả một tình huống Đầu ra: thường là quyết định yes/no, hoặc các phân loại. Trong cây quyết định: Mỗi nút trong biểu diễn một sự kiểm tra trên một thuộc tính nào đó, mỗi giá trị có thể của nó tương đương với một nhánh của cây Các nút lá thể hiện sự phân loại. Kích cỡ của cây QĐ tùy thuộc vào thứ tự của các kiểm tra trên các thuộc tính. 4 Ví d Cây QĐ: Chơi Tennis Mục đích: học để xem có chơi Tennis không? Cây quyết định: nắng Quang cảnh Âm u Độ ẩm cao No mưa Yes Trung .