Bài giảng “Phương pháp tính – Chương 3: Hệ phương trình tuyến tính” cung cấp cho người học các kiến thức: Phương pháp Gauss, phương pháp nhân tử LU, phương pháp Cholesky, chuẩn, hệ pt ổn định và số điều kiện, nội dung chi tiết. | CHƯƠNG 3 HỆ PHƯƠNG TRÌNH TUYẾN TÍNH I. ĐẶT BÀI TOÁN : Hệ phương trình tuyến tính n pt và n ẩn có dạng Ax = b với Các phương pháp giải ➢ Phương pháp giải chính xác ▪ Phương pháp Gauss ▪ Phương pháp nhân tử LU ▪ Phương pháp Cholesky ➢ Phương pháp giải gần đúng ▪ Phương pháp lặp Jacobi ▪ Phương pháp lặp Gauss-Seidel II. PHƯƠNG PHÁP GAUSS 1. Các dạng ma trận đặc biệt : a. Ma trận tam giác dưới detA = a11a22 . . . ann ≠ 0 ⇔ aii ≠ 0, ∀i Phương trình có nghiệm b. Ma trận tam giác trên : detA = a11a22 . . . ann ≠ 0 ⇔ aii ≠ 0, ∀i Phương trình có .