Applications of FACTS devices for improving power system transient stability

This paper investigates models of Flexible AC Transmission Systems (FACTS) and applications of FACTS devices for improving the rotor angle stability. FACTS devices are applicable in shunt connection Static Var Compensator (SVC), in series connection Thyristor-Controlled Series Capacitor (TCSC), or in the combination of both. | TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K6- 2015 Applications of FACTS devices for improving power system transient stability Dang Tuan Khanh Nguyen Van Liem Ho Chi Minh city University of Technology, VNU-HCM, Vietnam (Manuscript Received on July 15, 2015, Manuscript Revised August 30, 2015) ABSTRACT As the power demand has been increasing rapidly, today’s modern power system becomes to be more complex and faces many challenges. It is envisaged that transient stability will play the important role in ensuring the steady state operation of power systems in the event of three phases fault or switching of lines. This paper investigates models of Flexible AC Transmission Systems (FACTS) and applications of FACTS devices for improving the rotor angle stability. FACTS devices are applicable in shunt connection Static Var Compensator (SVC), in series connection Thyristor-Controlled Series Capacitor (TCSC), or in the combination of both. Mathematical models of power systems having FACTS devices are set of Differential - Algebraic Equations (DAEs). Trapezoidal rule and Newton - Raphson method are applied to solve DAEs. The simulation results of rotor angles demonstrate the effectiveness and robustness of proposed the SVC and TCSC on transient stability enhancement of power systems. Keywords: Angle stability, FACTS, power system, power system stability, transient stability, SVC, STATCOM, TCSC, UPFC 1. INTRODUCTION Stability is always the important issue in today’s modern power system. Power system stability may be broadly defined as that property of power system that enables it to remain in a state of operating equilibrium under normal operating conditions and to regain an acceptable state of equilibrium after being subjected to a disturbance [1]. This paper concentrates the rotor angle on analyzing transient stability. Rotor angle stability is the ability of interconnected synchronous machines of power systems to remain in synchronism. As FACTS devices are .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.