Xấp xỉ poisson trên không gian d-chiều qua khoảng cách Trotter-Rényi

Bài viết Xấp xỉ poisson trên không gian d-chiều qua khoảng cách Trotter-Rényi trình bày mục đích chính của bài báo là sử dụng công cụ khoảng cách Trotter-Rényi để giải quyết các bài toán xấp xỉ Poisson trên không gian d-chiều. Bên cạnh việc giải quyết bài toán cho trường hợp tổng tất định, bài viết còn xét cho cả tr­ường hợp tổng ngẫu nhiên,. Mời các bạn cung tham khảo. | Tạp chí Khoa học Trường Đại học Cần Thơ Tập 54, Số 3A (2018): 53-58 DOI: XẤP XỈ POISSON TRÊN KHÔNG GIAN D-CHIỀU QUA KHOẢNG CÁCH TROTTER-RÉNYI Lê Trường Giang1* và Trịnh Hữu Nghiệm2 1 Trường Đại học Tài chính - Marketing Trường Đại học Nam Cần Thơ *Người chịu trách nhiệm về bài viết: Lê Trường Giang (email: ltgiang@) 2 ABSTRACT Thông tin chung: Ngày nhận bài: 02/08/2017 Ngày nhận bài sửa: 11/10/2017 Ngày duyệt đăng: 27/04/2018 Title: Poisson approximation on ddimensional space via TrotterRényi distance Từ khóa: Khoảng cách Trotter-Rényi, không gian d-chiều, tổng ngẫu nhiên, vectơ ngẫu nhiên Bernoulli, xấp xỉ Poisson The main purpose of this article is to use Trotter-Rényi distance to solve Poisson approximation problems in d-dimensional space. Besides solving the problem for the case of determination sums, this article also considers the case of random sums. The results are extensions and generalizations of some known results. TÓM TẮT Mục đích chính của bài báo là sử dụng công cụ khoảng cách TrotterRényi để giải quyết các bài toán xấp xỉ Poisson trên không gian d-chiều. Bên cạnh việc giải quyết bài toán cho trường hợp tổng tất định, bài viết còn xét cho cả trường hợp tổng ngẫu nhiên. Các kết quả nhận được là sự mở rộng và khái quát hóa một số kết quả đã biết. Keywords: Bernoulli random vector, ddimensional space, Poisson approximation, Random sums, Trotter-Rényi distance Trích dẫn: Lê Trường Giang và Trịnh Hữu Nghiệm, 2018. Xấp xỉ poisson trên không gian d-chiều qua khoảng cách Trotter-Rényi. Tạp chí Khoa học Trường Đại học Cần Thơ. 54(3A): 53-58. 1 GIỚI THIỆU Cho X n , n 1 d ở đây, e j (0, ., 0,1, 0,., 0) được ký hiệu là vectơ nhận giá trị 1 tại vị trí thứ j và nhận giá trị là dãy các vectơ ngẫu nhiên độc lập, nhận phân phối Bernoulli d-chiều trong d , X k X k (1), X k (2), , X k ( d ) ; k , d , với xác suất thành công 0 tại các vị trí còn lại; (0, 0,., 0). Đặt n S n X k S n

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.