Để giúp các bạn học sinh củng cố lại phần kiến thức đã học, biết cấu trúc ra đề thi như thế nào và xem bản thân mình mất bao nhiêu thời gian để hoàn thành đề thi này. Đề thi thử THPT Quốc gia môn Toán lớp 10 năm 2017 lần 4 - THPT Ngô Sĩ Liên - Mã đề 357 dưới đây để có thêm tài liệu ôn thi. | SỞ GD&ĐT BẮC GIANG TRƯỜNG THPT NGÔ SĨ LIÊN ĐỀ THI THỬ KỲ THI THPTQG LẦN 4 Năm học 2016 - 2017 Môn: TOÁN LỚP 10 Thời gian làm bài: 90 phút, không kể thời gian phát đề Họ, tên thí sinh:.Số báo danh : Câu 1: Cho hai vectơ a , b cùng khác 0 . Khi a . b a . b thì góc giữa hai vectơ a , b là A. 900. B. 600. C. 1800. 1 Câu 2: Đồ thị hàm số y x 2 đi qua điểm có tọa độ 3 2 5 A. 2 1; B. (3; 1) . C. (66; 20) . . 3 3 Mã đề thi 357 D. 00. D. (15; 7) . Câu 3: Với mọi góc thỏa mãn 00 1800 , ta luôn có A. tan cot 1 . B. sin 1 . C. sin 1 cos 2 . D. cos 1 sin 2 . Câu 4: Với mọi tam giác ABC ta luôn có cos B bằng a 2 c 2 b2 b2 c2 a 2 . . A. cos( A + C). B. C. D. 1 sin 2 B . 2ac 2bc Câu 5: Cho hàm số y ax+ b , đồ thị hàm số đi qua hai điểm M ( 4; 2) và N (1; 1) khi và chỉ khi 1 6 1 2 A. a , b . B. a 1, b 6 . C. a 1, b 2 . D. a , b . 5 5 3 3 Câu 6: Giá trị nhỏ nhất của hàm số y x 2 3x 2 trên 1;0 là A. 2. 1 B. . 4 C. 6. b a có nghiệm duy nhất khi và chỉ khi x 1 A. a 0 và b 0 . B. a 0 và b 2a . C. a = 0. D. 1. Câu 7: Phương trình D. a 0 . Câu 8: Giá trị nhỏ nhất của hàm số y 7 x 3 trên đoạn 1; 5 bằng A. 11 . B. Không có giá trị nhỏ nhất. C. 10 . D. 32 . Câu 9: Để đảm bảo phong thủy cho một ngôi biệt thự, người ta cần làm một vườn hoa hình tam giác, sao cho hàng rào BC phải đi qua M. Biết rằng điểm M này cách bức tường thứ nhất là 1m, cách bức tường thứ hai là 2m ( như hình vẽ). Sau khi tính toán, người ta đã chọn được vị trí đặt hai điểm B và C để làm hàng rào trang trí BC sao cho mảnh vườn có diện tích là nhỏ nhất, khi đó độ dài của hàng rào BC là A. 3 5 m. 2 B. 3 5 m. C. 20 m. D. 2 5 m. Câu 10: Đường thẳng qua A(2;1) và song song với đường thẳng 3 x y 1 0 có phương trình là A. 3 x y 5 0. B. x 3 y 5 0. C. 3 x y