Lecture Electric circuits analysis - Lecture 17: Problems solving-superposition theorem

Lecture Electric circuits analysis - Lecture 17: Problems solving-superposition theorem. In this chapter, the following content will be discussed: analysis of series-parallel resistive circuits, voltage dividers with resistive loads, ladder networks, | Problems Solving-Superposition Theorem RT(SI)=, IT(S1)=, I3(S1)= RT(S2)=, IT(S2)=, I3(S2)=. I3(tot)=910µA Find the total Current through R3 Lecture 17 RT(SI)=, IT(S1)=, I3(S1)= RT(S2)=, IT(S2)=, I3(S2)=. I3(tot)=910µA Using the superposition method, calculate the current through R 5. (Solved on 2 slides) RT(2V) = kΩ, IT= mA, I3= 577 μA, I5= 180 μA , RT(3V) = kΩ, IT= mA, I5= 655 μA, I5(total) = 180 μA + 665 μA = 845 μA RT(2V) = kΩ, IT= mA, I3= 577 μA, I5= 180 μA , RT(3V) = kΩ, IT= mA, I5= 655 μA, I5(total) = 180 μA + 665 μA = 845 μA Use the superposition theorem to find the current in and the voltage across the R2 branch of the circuit. (Solved on 2 slides) RT(2V) = kΩ, IT= mA,I2= 443 μA, RT(3V) = kΩ, IT= mA, I3= 865 μA, I2= 270 μA, I2 = 443 μA + 270 μA = 713 μA RT(2V) = kΩ, IT= mA,I2= 443 μA, RT(3V) = kΩ, IT= mA, I3= 865 μA, I2= 270 μA, I2 = 443 μA + 270 μA = 713 μA Using the superposition theorem, solve for the current through R3. (Solved on 2 slides) For Is: RT=, I3= mA For Vs:RT = Ω, IT= mA, I3= mA, I3(total) = mA For Is: RT=, I3= mA For Vs:RT = Ω, IT= mA, I3= mA, I3(total) = mA Using the superposition theorem, find the load current. IL = 361 mA, I(tot)=362mA Using the superposition theorem, find the load current. (Solved on 2 slides) For 40V: IL = 0 A, For .5A: IL=0A, For 60V: VL=, IL= mA, IL(tot) = mA For 40V: IL = 0 A, For .5A: IL=0A, For 60V: VL=, IL= mA, IL(tot) = mA Determine the voltage from point A to point B in the following Figure. (Solved on 3 slides) For 75 V: R2345= kΩ, VA=13V, VB= For 50V: R1245= 25 kΩ, VA=− V, VB=− For 100V: R123=, RT=, IT=850μA, VA= V, VB=− V ,VA= V, VB =− V, VAB = V For 75 V: R2345= kΩ, VA=13V, VB= For 50V: R1245= 25 kΩ, VA=− V, VB=− For 100V: R123=, RT=, IT=850μA, VA= V, VB=− V ,VA= V, VB =− V, VAB = V For 75 V: R2345= kΩ, VA=13V, VB= For 50V: R1245= 25 kΩ, VA=− V, VB=− For 100V: R123=, RT=, IT=850μA, VA= V, VB=− V ,VA= V, VB =− V, VAB = V In the following figure two ladder networks are shown. Determine the current provided by each of the batteries when terminals A are connected (A to A) and terminals B are connected (B to B). (Solved on 2 slides) For Vs1: RT= kΩ, IT= For Vs2: RT= kΩ, IT= mA For Vs1: RT= kΩ, IT= For Vs2: RT= kΩ, IT= mA | Problems Solving-Superposition Theorem RT(SI)=, IT(S1)=, I3(S1)= RT(S2)=, IT(S2)=, I3(S2)=. I3(tot)=910µA Find the total Current through R3 Lecture 17 RT(SI)=, IT(S1)=, I3(S1)= RT(S2)=, IT(S2)=, I3(S2)=. I3(tot)=910µA Using the superposition method, calculate the current through R 5. (Solved on 2 slides) RT(2V) = kΩ, IT= mA, I3= 577 μA, I5= 180 μA , RT(3V) = kΩ, IT= mA, I5= 655 μA, I5(total) = 180 μA + 665 μA = 845 μA RT(2V) = kΩ, IT= mA, I3= 577 μA, I5= 180 μA , RT(3V) = kΩ, IT= mA, I5= 655 μA, I5(total) = 180 μA + 665 μA = 845 μA Use the superposition theorem to find the current in and the voltage across the R2 branch of the circuit. (Solved on 2 slides) RT(2V) = kΩ, IT= mA,I2= 443 μA, RT(3V) = kΩ, IT= mA, I3= 865 μA, I2= 270 μA, I2 = 443 μA + 270 μA = 713 μA RT(2V) = kΩ, IT= mA,I2= 443 μA, RT(3V) = kΩ, IT= mA, I3=

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.