Koszul homology annihilators with respect to distinguished D sequences

Let (R, m) be a Noetherian local ring and M a finitely generated R-module of dimension d. Let x = (x1, . . . , xd) be a system of parameters of M. In this paper, we give some applications of dd-sequences in the study of certain Koszul homology modules. Recall that the notion of dd-sequence was introduced by N. T. Cuong and D. T. Cuong [4], which is a distinguished type of d-sequence defined by C. Huneke. | Phạm Hồng Nam Tạp chí KHOA HỌC & CÔNG NGHỆ 135(05): 103 - 108 KOSZUL HOMOLOGY ANNIHILATORS WITH RESPECT TO DISTINGUISHED d-SEQUENCES PHAM HONG NAM College of Sciences, Thai Nguyen University Thai Nguyen, Vietnam e-mail: phamhongnam2106@ Abstract Let (R, m) be a Noetherian local ring and M a finitely generated R-module of dimension d. Let x = (x1 , . . . , xd ) be a system of parameters of M . In this paper, we give some applications of dd-sequences in the study of certain Koszul homology modules. Recall that the notion of dd-sequence was introduced by N. T. Cuong and D. T. Cuong [4], which is a distinguished type of d-sequence defined by C. Huneke [8]. 1 Introduction Throughout this paper, let (R, m) be a commutative local Noetherian ring and M a finitely generated R-module of dimension d. Let x = (x1 , . . . , xd ) be a system of parameters of M . Following C. Huneke [8], (x1 , . . . , xd ) is called a d-sequence of M if for all integers i, j satisfying 1 6 i 6 j 6 d we have (x1 , . . . , xi−1 )M :M xj = (x1 , . . . , xi−1 )M :M xi xj . Then, by N. T. Cuong and D. T. Cuong [4, Remark (iii)], (x1 , . . . , xd ) is called a dd-sequence of M iff for any i ∈ {1, . . . , d} and any d-tuple of positive integers (n1 , . . . , nd ), the sequence ni+1 xn1 1 , . . . , xni i is a d-sequence of M/(xi+1 , . . . , xnd d )M. It should be mentioned that every dd-sequence is a d-sequence, but the converse statement is not true, cf. [4, Example ]. Moreover, if R is universally catenary and all formal fibers of R are Cohen-Macaulay then dd-sequences of M exist, cf. [5]. The purpose of this paper is to use dd-sequence to study certain Koszul homology modules with respect to dd-sequences of M . Denote by Hi (x; M ) the i-th Koszul homology module of M with respect to x. If x is a strong d-sequence of M , . (xn1 1 , . . . , xnd d ) is a d-sequence for all n1 , . . . , nd , then (xk+1 , . . . , xd )Hj (x1 , . . . , xk ; M ) = 0 for all k = 1, . . . , d .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.