This paper proposes a novel uni-planar dual-band antenna using Composite Right Left Handed (CRLH) transmission line (CRLH-TL). Proposed antenna is designed based on the fringing effects of metamaterials and combined with coplanar waveguide (CPW) feeding in order to create two frequency bands for WLAN applications at the and GHz bands. | Vietnam Journal of Science and Technology 55 (3) (2017) 334-346 DOI: NOVEL COMPACT DUAL-BROADBAND PLANAR METAMATERIAL ANTENNA Dang Nhu Dinh1, 2, *, Dinh Thanh Liem1, Huynh Nguyen Bao Phuong3, Hoang Phuong Chi1, Dao Ngoc Chien4 1 2 Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi, Viet Nam The University of Fire Fighting and Prevention, 243 Khuat Duy Tien, Hanoi, Viet Nam 3 Quy Nhon University, 170 An Duong Vuong, Binh Binh, Viet Nam 4 Ministry of Science and Technology, 113 Tran Duy Hung, Hanoi, Viet Nam * Email: Received: 25 July 2016, Accepted for publication: 15 January 2017 ABSTRACT This paper proposes a novel uni-planar dual-band antenna using Composite Right Left Handed (CRLH) transmission line (CRLH-TL). Proposed antenna is designed based on the fringing effects of metamaterials and combined with coplanar waveguide (CPW) feeding in order to create two frequency bands for WLAN applications at the and GHz bands. Principle of gradual transform is applied to the antenna for extending the resonance frequency ranges. Optimized metamaterial antenna are fabricated and measured. Measurement results showed that the antenna operates in two broad frequency ranges spreading from to GHz and from to GHz with very compact overall dimensions of 18 mm × 16 mm ( λ0 × ). Keywords: metamaterial transmission line, monopole antenna, fringing effect. 1. INTRODUCTION Recently, wireless communication systems have rapidly growing with the requirements of compact electronic devices. Therefore, the antenna device also must be small in size, lightweight and easy to fabricate. Normally, antenna size is always inversely proportional to its operating frequency. Such that, the size of the antenna will be enlarged at low frequency bands. For what concerns of tackling this issue, there have been many techniques proposed to reduce the size of antennas [1 - 10]. The transmission