Lecture Electrical Engineering: Lecture 21 - Dr. Nasim Zafar

The main contents of the chapter consist of the following: Common-emitter characteristics, BJT as an amplifier, small signal operation, BJT amplifiers using coupling and bypass capacitors, BJT amplifiers-DC equivalent circuits. | Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad BJT as an Amplifier. Small-Signal Operation and Equivalent Circuits: Lecture No. 21 Contents: Common-Emitter Characteristics. BJT as an Amplifier. Small Signal Operation. BJT Amplifiers using Coupling and Bypass Capacitors. BJT Amplifiers-DC Equivalent Circuits. Nasim Zafar 2 References: Microelectronic Circuits: Adel S. Sedra and Kenneth C. Smith. Integrated Electronics : Jacob Millman and Christos Halkias (McGraw-Hill). Introductory Electronic Devices and Circuits Robert T. Paynter Electronic Devices : Thomas L. Floyd ( Prentice Hall ). Nasim Zafar 3 Lecture No. 21 Reference: Microelectronic Circuits: Adel S. Sedra and Kenneth C. Smith. Nasim Zafar 4 Introduction Common-Emitter Characteristics-I: We had discussed Common Emitter Current-Voltage characteristic curves extensively to understand: How the transistor operates as a linear signal amplifier for the ac signals. The basis for the amplifier application is the fact that when the BJT is operated in the active-mode, it acts as the voltage-controlled-current source: Changes in the base-emitter voltage VBE give rise to changes in the collector current Ic. Thus, in the active-mode, the BJT can be used to implement a transconductance amplifier. Nasim Zafar 5 Introduction Common-Emitter Characteristics-II: Once these basics are understood we will understand: How we can replace the transistor by a small ac-signal equivalent circuit. How to derive a simple ac equivalent circuit from the characteristic curves. Some of the limitations of our simple equivalent circuit. 6 Nasim Zafar The Common-Emitter Amplifier Circuit: Nasim Zafar 7 Common-Emitter Amplifier Circuit: The common-emitter amplifier exhibits high voltage and current gain. The output signal is 180º out of phase with the input. 8 Nasim Zafar 8 Fig. 6-8 ce amp Point A corresponds to the positive peak. Point B corresponds to the | Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad BJT as an Amplifier. Small-Signal Operation and Equivalent Circuits: Lecture No. 21 Contents: Common-Emitter Characteristics. BJT as an Amplifier. Small Signal Operation. BJT Amplifiers using Coupling and Bypass Capacitors. BJT Amplifiers-DC Equivalent Circuits. Nasim Zafar 2 References: Microelectronic Circuits: Adel S. Sedra and Kenneth C. Smith. Integrated Electronics : Jacob Millman and Christos Halkias (McGraw-Hill). Introductory Electronic Devices and Circuits Robert T. Paynter Electronic Devices : Thomas L. Floyd ( Prentice Hall ). Nasim Zafar 3 Lecture No. 21 Reference: Microelectronic Circuits: Adel S. Sedra and Kenneth C. Smith. Nasim Zafar 4 Introduction Common-Emitter Characteristics-I: We had discussed Common Emitter Current-Voltage characteristic curves extensively to understand: How the transistor operates as a linear signal amplifier

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.