# A new view of the bubnov-galerkin method in the linearization context

## In the study an extension of the Bubnov-Galerkin method in terms of the equivalent linearization method is presented. It is combined with sequential linearization and nonlinear procedure to yield a new method for solving nonlinear equations which can improve the accuracy when the nonlinearity is strong. For illustration the Duffing oscillator is considered to show the effectiveness of the proposed method. | Vietnam Journal of Mechanics, VAST, Vol. 34, No. 1 (2012), pp. 1 – 6 A NEW VIEW OF THE BUBNOV-GALERKIN METHOD IN THE LINEARIZATION CONTEXT N. D. Anh1 and I. Elishakoff2 Institute of Mechanics, Hanoi, Vietnam 2 Florida Atlantic University, Boca Raton, USA 1 Abstract. In the study an extension of the Bubnov-Galerkin method in terms of the equivalent linearization method is presented. It is combined with sequential linearization and nonlinear procedure to yield a new method for solving nonlinear equations which can improve the accuracy when the nonlinearity is strong. For illustration the Duffing oscillator is considered to show the effectiveness of the proposed method. Keywords: Bubnov-Galerkin, nonlinear, stochastic, Duffing. 1. INTRODUCTION Bubnov-Galerkin method is one of most popular approximate methods in many fields of applied mechanics since the method is general in scope and can be used for both conservative and nonconservative, both linear and nonlinear systems. The idea was apparently first suggested in 1913 by Bubnov [1], whereas the first paper along with elaborative examples was written in 1915 by Galerkin [2]. In 1937 Duncan [3] published the first comprehensive review of the method in the Western literature. For a given differential equation the Bubnov-Galerkin method approximates the sought solution as a linear combination of comparison functions and requires the orthogonality of the residual to each of comparison functions. In this context the Bubnov-Galerkin method is also known as a weighted residual method [4]. Although the method can be used for both linear and nonlinear systems, it is known that the accuracy of the method decreases when the nonlinearity becomes larger. Elishakoff [5] connected the Bubnov-Galerkin method with the equivalent linearization method. In this paper a representation of the Bubnov-Galerkin method in terms of the equivalent linearization method is presented and a dual approach is subsequently adopted to suggest a new .

TÀI LIỆU LIÊN QUAN
9    107    0
11    103    0
12    285    0
10    98    0
15    113    1
13    75    0
9    104    0
8    218    0
12    87    0
13    102    0
TÀI LIỆU XEM NHIỀU
13    40826    2410
3    24925    248
25    24428    4276
16    20038    2844
20    19482    1543
14    19255    2966
1    19244    615
37    16147    2958
3    15944    329
1    14553    132
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
120    299    1    22-05-2024
6    475    4    22-05-2024
7    324    1    22-05-2024
57    64    5    22-05-2024
136    102    6    22-05-2024
5    247    1    22-05-2024
6    471    1    22-05-2024
6    149    1    22-05-2024
3    172    1    22-05-2024
121    51    1    22-05-2024
126    78    2    22-05-2024
157    5    1    22-05-2024
7    75    1    22-05-2024
119    72    2    22-05-2024
94    81    4    22-05-2024
77    530    3    22-05-2024
12    6    1    22-05-2024
24    87    2    22-05-2024
200    151    1    22-05-2024
6    68    1    22-05-2024
TÀI LIỆU HOT
3    24925    248
13    40826    2410
3    2764    81
580    5079    363
584    3336    100
62    6657    1
171    5695    719
2    3121    78
51    4451    200
53    4726    188
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.