# On a class of non-linear differential equations with exact solutions

## The present paper deals with a class of non-linear ordinary second-order differential equations with exact solutions. A procedure for finding the general exact solution based on a known particular one is derived. For illustration solutions of some non-linear equations occured in many problems of solid mechanics are considered. | Vietnam Journal of Mechanics, VAST, Vol. 34, No. 1 (2012), pp. 7 – 17 ON A CLASS OF NON-LINEAR DIFFERENTIAL EQUATIONS WITH EXACT SOLUTIONS Dao Huy Bich1 , Nguyen Dang Bich2 1 Hanoi University of Science, VNU 2 Institute for Building Science and Technology Abstract. The present paper deals with a class of non-linear ordinary second-order differential equations with exact solutions. A procedure for finding the general exact solution based on a known particular one is derived. For illustration solutions of some non-linear equations occured in many problems of solid mechanics are considered. Key words: Non-linear differential equation, general exact solution, varying coefficient iteration method, procedure for finding exact solution. 1. INTRODUCTION Generally for seeking an exact solution of a non-linear differential equation it is necessary to find an appropriate transformation deriving the non-linear equation to a linear one, but finding of such transformation is very complicated. In fact many problems of solid mechanics reduce to different types of non-linear differential equations, solutions of which can demonstrate specific effects, however through only exact solutions these effects can be observed profoundly. Hence finding exact solutions becomes very important in researching non-linear mechanical problems. The present paper introduces an idea and a procedure to find general exact solutions of a class of non-linear ordinary second-order differential equations based on known particular solutions. If a particular exact solution is known, then a general exact solution can be found, but for a received approximate particular one, a general solution may be obtained approximately with desired accuracy by the varying coefficient iteration method. 2. IDEA AND PROCEDURE FOR FINDING EXACT SOLUTION Consider a non-linear second-order differential equation 2 d x˙ b x˙ b a1 + a2 x + a3 + + a1 + a2 x + a3 + + dt x+d x+d x+d x+d 2 d x˙ b x˙ b + + b2 x + b3 + + b2

TÀI LIỆU LIÊN QUAN
9    104    0
11    100    0
12    279    0
10    94    0
15    105    1
13    74    0
9    97    0
8    216    0
12    84    0
13    100    0
TÀI LIỆU XEM NHIỀU
13    35461    1901
3    22328    231
25    20791    3958
20    17671    1500
16    17494    2670
14    15890    2714
1    15033    492
37    13936    2857
3    12510    238
23    11419    403
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
60    39    2    01-02-2023
80    3    1    01-02-2023
59    17    1    01-02-2023
9    28    1    01-02-2023
227    10    1    01-02-2023
5    192    1    01-02-2023
5    17    1    01-02-2023
112    13    1    01-02-2023
109    11    1    01-02-2023
8    21    1    01-02-2023
6    12    1    01-02-2023
3    1    1    01-02-2023
4    18    1    01-02-2023
6    29    1    01-02-2023
5    1    1    01-02-2023
123    83    1    01-02-2023
4    15    1    01-02-2023
66    107    1    01-02-2023
8    31    1    01-02-2023
22    162    2    01-02-2023
TÀI LIỆU HOT
3    22328    231
13    35461    1901
3    1869    77
580    3927    358
584    2232    90
62    5048    1
171    4419    651
2    2096    74
51    2908    159
53    3818    181
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này. 