Numerical calculating linear vibrations of third order systems involving fractional operators

This paper presents a numerical method for dynamic calculation of third order systems involving fractional operators. Using the Liouville-Rieman’s definition of fractional derivatives, a numerical algorithm is developed on base of the well-known Newmark integration method to calculate dynamic response of third order systems. Then, we apply this method to calculate linear vibrations of viscoelastic systems containing fractional derivatives. | Vietnam Journal of Mechanics, VAST, Vol. 34, No. 2 (2012), pp. 91 – 99 NUMERICAL CALCULATING LINEAR VIBRATIONS OF THIRD ORDER SYSTEMS INVOLVING FRACTIONAL OPERATORS Nguyen Van Khang1 , Tran Dinh Son2 , Bui Thi Thuy2 1 Hanoi University of Technology, Vietnam 2 Hanoi University of Mining and Geology, Vietnam Abstract. This paper presents a numerical method for dynamic calculation of third order systems involving fractional operators. Using the Liouville-Rieman’s definition of fractional derivatives, a numerical algorithm is developed on base of the well-known Newmark integration method to calculate dynamic response of third order systems. Then, we apply this method to calculate linear vibrations of viscoelastic systems containing fractional derivatives. Key words: Fractional order derivative, numerical method, vibration, third order system. 1. INTRODUCTION In 1959 Newmark presented a family of single-step integration methods for the solution of structural dynamic problems [1, 2]. During the past time Newmark’s method has been applied to the dynamic analysis of many practical engineering structures. It has been modified and improved by many other researchers such as Wilson, Hilber, Hughes and Taylor. However, these methods are only used for the system of second order equations. The concepts of fractional derivatives [3, 4, 5] appeared many years ago and are introduced by famous mathematicians like Riemann, Liouville, Gr¨ unwald, Letnikov, Caputo. The concept of fractional operators in engineering applications is now increasingly attractive in the formulations of the constitutive law for some viscoelastic materials. In [6, 7, 8] Shimizu and Zhang have used the Newmark integration method for calculating the vibrations of second order systems involving fractional derivatives. Many vibration problems in engineering lead the system of differential equations of third order. In this paper we present the using Newmark integration method for calculating vibrations of .

TÀI LIỆU LIÊN QUAN
9    107    0
11    103    0
12    285    0
10    98    0
15    113    1
13    75    0
9    104    0
8    218    0
12    87    0
13    102    0
TÀI LIỆU XEM NHIỀU
13    40309    2365
3    24542    247
25    23902    4239
16    19689    2833
20    19219    1538
1    18944    611
14    18792    2947
37    15834    2952
3    15375    321
1    13900    126
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
7    3    1    05-03-2024
35    57    3    05-03-2024
90    56    3    05-03-2024
121    176    4    05-03-2024
18    62    1    05-03-2024
16    239    1    05-03-2024
99    377    3    05-03-2024
3    6    1    05-03-2024
135    37    1    05-03-2024
115    71    4    05-03-2024
4    67    2    05-03-2024
5    43    1    05-03-2024
70    85    1    05-03-2024
156    53    1    05-03-2024
5    47    1    05-03-2024
378    42    1    05-03-2024
2    4    1    05-03-2024
15    8    1    05-03-2024
8    55    1    05-03-2024
5    53    1    05-03-2024
TÀI LIỆU HOT
3    24542    247
13    40309    2365
3    2601    81
580    4857    361
584    3143    97
62    6438    1
171    5508    716
2    2924    78
51    4257    198
53    4516    187
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.