Đề tài “Phương trình hàm với một biến số” nhằm nêu ra một số kĩ thuật và phương pháp cơ bản thường được sử dụng để giải quyết các bài toán phương trình hàm một biến số. nội dung chi tiết. | 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC ĐÀ NẴNG ĐẦU THANH PHONG PHƯƠNG TRÌNH HÀM VỚI MỘT BIẾN SỐ Chuyên ngành: PHƯƠNG PHÁP TOÁN SƠ CẤP Mã số: TÓM TẮT LUẬN VĂN THẠC SĨ KHOA HỌC Đà Nẵng – Năm 2011 2 Công trình ñược hoàn thành tại ĐẠI HỌC ĐÀ NẴNG Người hướng dẫn khoa học: TS. Lê Hoàng Trí Phản biện 1: TS. Nguyễn Ngọc Châu Phản biện 2: PGS. TS. Nguyễn Gia Định Luận văn sẽ ñược bảo vệ trước Hội ñồng chấm Luận văn tốt nghiệp thạc sĩ khoa học họp tại Đại học Đà Nẵng vào ngày 28 tháng 05 năm 2011 Có thể tìm hiểu luận văn tại: - Trung tâm Thông tin – Học liệu, Đại học Đà Nẵng - Thư viện trường Đại học Sư phạm, Đại học Đà Nẵng 3 MỞ ĐẦU 1. LÝ DO CHỌN ĐỀ TÀI Phương trình hàm là một lĩnh vực quan trọng của giải tích. Bài toán giải phương trình hàm có lẽ là một trong những bài toán lâu ñời nhất của giải tích. Nhu cầu giải phương trình hàm xuất hiện ngay khi bắt ñầu có lý thuyết hàm số. Nhiều phương trình hàm xuất phát từ nhu cầu thực tế của Toán học hoặc của các ngành khoa học khác. Phương trình hàm cũng là một chuyên ñề quan trọng thuộc chương trình chuyên toán trong các trường THPT chuyên. Trong các kỳ thi olympic toán quốc gia và quốc tế, olympic toán khu vực, thường xuất hiện các dạng toán khác nhau có liên quan ñến phương trình hàm. Tuy nhiên, cho ñến nay, học sinh các lớp chuyên, lớp chọn còn biết rất ít các phương pháp chính thống ñể giải các phương trình hàm. Đặc biệt, hiện nay còn rất ít các cuốn sách về chuyên ñề phương trình hàm và ứng dụng của chúng [4]. Các dạng toán về phương trình hàm rất phong phú và ña dạng, bao gồm các loại phương trình tuyến tính và phi tuyến tính, phương trình một ẩn hàm và phương trình nhiều ẩn hàm, phương trình hàm với một biến số và phương trình hàm với hai hoặc nhiều biến số, Các bài toán về phương trình hàm nói chung là các bài toán khó, phương trình hàm với một biến nói riêng lại càng khó hơn. Việc giải quyết các phương trình hàm với một biến số phức tạp hơn việc giải quyết các phương trình hàm có nhiều biến số gấp .