Prediction of cross second virial coefficients for dimer H2-O2 from AB initio calculations of intermolecular potentials

The intermolecular interaction potentials of the dimer H2-O2 were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-ccpVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The quantum mechanical results were used to construct 5-site pair potential functions. The cross second virial coefficients of the dimer hydrogen-oxygen were obtained by integration; in these cases corrections for quantum effects were included. The results agree well with experimental data and empirical correlations. | Journal of Chemistry, Vol. 46 (1), P. 120 - 126, 2008 Prediction of cross second virial coefficients for dimer H2-O2 from ab initio calculations of intermolecular potentials Received May 23, 2007 Pham Van Tat1, U. K. Deiters2 1 Department of Chemistry, University of Dalat 2 Institute of Physical Chemistry, University of Cologne, Germany Summary The intermolecular interaction potentials of the dimer H2-O2 were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-ccpVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The quantum mechanical results were used to construct 5-site pair potential functions. The cross second virial coefficients of the dimer hydrogen-oxygen were obtained by integration; in these cases corrections for quantum effects were included. The results agree well with experimental data and empirical correlations. I - Introduction Computer simulation techniques, Monte Carlo as well as Molecular Dynamics, cannot work without some input, however: It is necessary to know the interaction potentials of the systems under study. The usual procedure is to assume a simple model potential. A system is the fluid mixture (H2-O2). Its thermodynamic properties are important for the design of efficient rocket engines [1], but there are remarkably few publications of experimental results only -for evident reasons. Recently an alternative approach has become feasible, for which the name “global simulation” has been coined [2]. One of the first attempts in such global simulations was that of Deiters, Hloucha and Leonhard [3] for neon to predict the vapour-liquid phase equilibria without recourse to experimental data. Further global simulation attempts for noble gases were published by the group of Huber [4]. Using a 120 functional form for the dispersion potentials of argon and krypton proposed by Korona et al. [5]. Leonhard and Deiters constructed a 5-site Morse potential

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.