On the conditions for the complete convergence in mean for double sums of independent random elements in banach spaces

In this paper, we establish the condition for convergence of X∞ m=1 X∞ n=1 1 mn E kSmnk (mn) 1/p q for double arrays of independent random elements in Banach spaces following the type proposed by Li, Qi and Rosalsky. | Trường Đại học Vinh Tạp chí khoa học, Tập 46, Số 2A (2017), tr. 31-42 ON THE CONDITIONS FOR THE COMPLETE CONVERGENCE IN MEAN FOR DOUBLE SUMS OF INDEPENDENT RANDOM ELEMENTS IN BANACH SPACES Vu Thi Ngoc Anh (1) , Nguyen Thi Thuy (2) of Mathematics, Hoa Lu University, Ninh Binh 2 Teacher of Mathematics, Thanh Chuong 3 High School, Nghe An. Received on 19/4/2017, accepted for publication on 20/10/2017 1 Department Abstract: In this paper, we establish the condition for convergence of ∞ X ∞ X 1 kSmn k q E for double arrays of independent random elements mn (mn)1/p m=1 n=1 in Banach spaces following the type proposed by Li, Qi and Rosalsky [6]. 1. Introduction and Preliminaries Throughout this paper, let (B, ) be a real separable Banach space. Li, Qi and Rosalsky [6] extended Theorem in [1], Theorem 5 in [2] and Theorems and in [4] as follows: Let 0 0. Let {Xn , n ≥ 1} be a sequence of independent copies of a B-valued random element X. Set Sn = X1 + X2 + · · · + Xn , n ≥ 1. Then ∞ X 1 kSn k q E t) dt p 0 Based on that idea, we establish the condition for convergence of ∞ ∞ X X 1 kSmn k q E for double arrays of independent random elements in Banach 1/p mn (mn) m=1 n=1 spaces. 1) Email: anhyk86@ (V. T. N. Anh). 31 Vu Thi Ngoc Anh, Nguyen Thi Thuy/ On the conditions for the complete convergence in mean. Throughout this paper, the symbol C denotes a generic constant (0 0. Let {Xmn , m ≥ 1, n ≥ 1} be a double array of independent copies of a B-valued random element X. Set Smn = m X n X Xkl , m ≥ 1, n ≥ 1. k=1 l=1 Then ∞ X ∞ X 1 kSmn k q E p (3) The following three lemmas are used to prove Theorem . Lemma . Let {cmn , m ≥ 1, n ≥ 1} be a double array of nonnegative real numbers. Then i) For all k ≥ 1, l ≥ 1, we have k X l X cij ≤ i=1 j=1 ∞ X ∞ X cij . (4) ckl as n → ∞. (5) i=1 j=1 ii) We have n X n X ckl % k=1 l=1 ∞ X ∞ X k=1 l=1 iii) If {amn , m ≥ 1, n ≥ 1} is a double array of positive .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.