Estimation of P{X< Y} for gamma exponential model

In this paper, we estimate probability P{X | Yugoslav Journal of Operations Research 24 (2014) Number 2, 283 - 291 DOI: ESTIMATION OF P{X 0 and β>0. We denote it with X: G( α , β). Its probability density function is given by: x f ( x; α , β ) = − 1 xα −1e β , x ≥ 0, α β Г(α ) where α is a shape parameter and β is a scale parameter. Let us suppose that random variable Y has exponential distribution with parameter λ, where λ>0. We denote it with Y: E(λ). Its probability density function is given by: g ( y; λ ) = 1 λ − e y λ , y ≥ 0, where λ is a scale parameter. It is known that E(λ) distribution is indeed a G(1, λ) distribution. . Maximum likelihood estimator of R Let X: G( α , β) and Y:E(λ), where X and Y are independent random variables. Therefore ∞ ∞ ∫ ∫ R = P{ X < Y } = dx f ( x; α , β ) g ( y; λ )dy 0 ∞ = 1 ∫ β α Г(α ) x 0 α −1 e − x ∞ x β dx 1 − y ∫ λ e λ dy x (1) 285 М. Jovanović, V. Rajić/ Estimation of P{X < Y} = ∞ 1 ∫ β α Г(α ) 0 xα −1e − x( 1 1 + ) β λ dx α ⎛ λ ⎞ =⎜ ⎟ . ⎝λ+β ⎠ Joint distribution for (X,Y) is given by h( x, y; α , β , λ ) = 1 λβ α Г(α ) xα −1e −( x y + ) β λ , ( X1 , Y1 ), ( X 2 , Y2 ),., ( X n , Yn ) be a random sample from that x ≥ 0 , y ≥ 0 . Let distribution. Therefore, the likelihood function and its ln are given by L(α , β , λ ) = n 1 (λβ α Г(α )) n (∏ xi )α −1 e −( 1 n 1 n x+ y) β ∑ i λ∑ i i =1 i =1 (2) i =1 n 1 i =1 β ln L(α , β , λ ) = −n(ln λ + α ln β + ln Г(α )) + (α − 1)∑ ln xi − n 1 n ∑ xi − ∑ yi , i =1 λ i =1 Taking partial derivatives of lnL with respect to α , β , and λ , we get n ∂ ln L Г′(α ) = − n(ln β + ) + ∑ ln xi , ∂α Г(α ) i =1 ∂ ln L −nα 1 = + 2 β ∂β β ∂ ln L −n 1 = + ∂λ λ λ2 n ∑ xi , i =1 n ∑ yi . i =1 Given the above identities to be equal to 0 and solving those equations, we obtain Г′(α ) 1 n = ∑ ln xi − ln β , Г(α ) n i =1 β= λ= 1 nα n ∑ xi , (3) (4) i =1 1 n ∑ yi n i =1 (5) Therefore, λˆ = Y . n From (3) and (4), we .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.