Optimality and duality for a class of nondifferentiable minimax fractional programming problems

Necessary and sufficient optimality conditions are established for a class of nondifferentiable minimax fractional programming problems with square root terms. Subsequently, we apply the optimality conditions to formulate a parametric dual problem and we prove some duality results. | Yugoslav Journal of Operations Research Vol 19 (2009), Number 1, 49-61 DOI: OPTIMALITY AND DUALITY FOR A CLASS OF NONDIFFERENTIABLE MINIMAX FRACTIONAL PROGRAMMING PROBLEMS Antoan BĂTĂTORESCU University of Bucharest, Bucharest batator@ Miruna BELDIMAN Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Bucharest Iulian ANTONESCU “Mircea cel Bătrân” Naval Academy, Constanţa, Romania iulanton@ Roxana CIUMARA Academy of Economic Studies, Bucharest marinrox@ Received: December 2007 / Accepted: May 2009 Abstract: Necessary and sufficient optimality conditions are established for a class of nondifferentiable minimax fractional programming problems with square root terms. Subsequently, we apply the optimality conditions to formulate a parametric dual problem and we prove some duality results. Keywords: Fractional programming, generalized invexity, optimality conditions, duality. 1. INTRODUCTION Let us consider the following continuous differentiable mappings: f : R n × R m → R, h : R n × R m → R, g : R n → R p , Ψ : R + → R , 50 A. Batatorescu, M. Beldiman, I. Antonescu, R. Ciumara / On Nondifferentiable Minimax where d Ψ ( x) def = Ψ '( x) > 0 , and g = ( g1 ," , g p ). We denote dx P = { x ∈ R n | g j ( x) ≤ 0, j = 1, 2," , p} () and consider the compact subset Y ⊆ R m . Let Br , r = 1, β , and Dq , q = 1, δ , be n × n positive semi definite matrices such that for each ( x, y ) ∈ P × Y , we have: β f ( x, y ) + ∑ xT Br x ≥ 0, r =1 δ h( x, y ) − ∑ xT Dq x > 0. q =1 In this paper we consider the following non differentiable minimax fractional programming problem: β δ ⎡⎛ ⎞⎤ ⎞ ⎛ inf sup Ψ ⎢⎜ f ( x, y ) + ∑ xT Br x ⎟ ⎜ h( x, y ) − ∑ xT Dq x ⎟ ⎥ . x∈P y∈Y r =1 q =1 ⎢⎣⎝ ⎠ ⎝ ⎠ ⎥⎦ (P) For β = δ = 1, and Ψ ≡ 1, this problem was studied by Lai et al. [3], and further, if B1 = D1 = 0, (P) is a differentiable minimax fractional programming problem which has .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.