Khám phá quy luật dãy số hỗ trợ học sinh phát triển năng lực suy luận toán học và việc hiểu các khái niệm hàm số và biến số (NCTM, 2000). Bài báo này phân tích cơ sở lí thuyết cho thấy hai loại suy luận được sử dụng để khám phá quy luật dãy số là ngoại suy và quy nạp. Kết quả thực nghiệm phản ánh khó khăn của học sinh trong việc đưa ra một giả thuyết ngoại suy đủ mạnh để hỗ trợ cho quy nạp nhằm đi đến một quy tắc tổng quát. | Số 9(75) năm 2015 TẠP CHÍ KHOA HỌC ĐHSP TPHCM _ SUY LUẬN NGOẠI SUY VÀ QUY NẠP TRONG KHÁM PHÁ QUY LUẬT DÃY SỐ NHỮNG PHÂN TÍCH LÍ THUYẾT VÀ THỰC NGHIỆM TRƯƠNG THỊ KHÁNH PHƯƠNG* TÓM TẮT Khám phá quy luật dãy số hỗ trợ học sinh phát triển năng lực suy luận toán học và việc hiểu các khái niệm hàm số và biến số (NCTM, 2000). Bài báo này phân tích cơ sở lí thuyết cho thấy hai loại suy luận được sử dụng để khám phá quy luật dãy số là ngoại suy và quy nạp. Kết quả thực nghiệm phản ánh khó khăn của học sinh trong việc đưa ra một giả thuyết ngoại suy đủ mạnh để hỗ trợ cho quy nạp nhằm đi đến một quy tắc tổng quát. Các phương án ngoại suy dựa trên việc khám phá biểu diễn trực quan mô tả quy luật dãy số có thể khắc phục vấn đề này. Từ khóa: quy luật dãy số, tổng quát hóa, suy luận ngoại suy, suy luận quy nạp. ABSTRACT Abductive reasoning and inductive reasoning in discovering sequence patterns – some theoretical and empirical analysis Discovering sequence patterns supports students to develope their reasoning and their conceptual understanding of functions and variables (NCTM, 2000). This paper shows that abductive reasoning and inductive reasoning are used to explore sequence patterns. The analysis of data shows that students have difficulties in suggesting a strong abduction that can combine with induction to get an algebraic rule of sequence pattern. Abduction based on visual representation which describes the sequence pattern can overcome this problem. Keywords: sequence patterns, generalization, abductive reasoning, inductive reasoning. 1. Giới thiệu Polya cho rằng toán học tồn tại hai kiểu suy luận: suy luận diễn dịch và suy luận có lí. Polya nhấn mạnh mối liên hệ chặt chẽ giữa suy luận diễn dịch và suy luận có lí như sau: “Toán học được xem là một môn khoa học chứng minh, tuy nhiên đó chỉ là một khía cạnh của nó. Chúng ta cần phải dự đoán về một định lí .