# Lecture Discrete structures: Chapter 6 - Amer Rasheed

## The topics discussed in this chapter are: The concrete data structures that can be used to store information, the basic forms of memory allocation, the prototypical examples of these: arrays and linked lists, other data structures, finally we will discuss the run-time of queries and operations on arrays and linked lists. | (CSC 102) Lecture 6 Discrete Structures Previous Lectures Summary Different forms of arguments Modus Ponens and Modus Tollens Additional Valid Arguments Valid Argument with False Conclusion Invalid argument with a true Conclusion Converse and Inverse error Contradictions and valid arguments Predicates and Quantified statements I Today’s Lecture Predicates Set Notation Universal and Existential Statement Translating between formal and informal language Universal conditional Statements Equivalent Form of Universal and Existential statements Implicit Qualification Negations of Universal and Existential statements Predicates A predicate is a sentence which contains finite number of variables and becomes a statement when specific values are substituted for the variables. The domain of a predicate variable is the set of all values that may be substituted in place of the variable Truth Set If P(x) is a predicate and x has domain D, the truth set of P(x) is the set of all elements of D that make P(x) true when substituted for x. The truth set of P(x) is denoted by read as “the set of all x in D such that P(x)”. For any two predicates P(x) and Q(x), the notation means that every element in the truth set of P(x) is in the truth set of Q(x). The notation means that P and Q have identical truth sets. Consider the predicate: The truth set of the above predicate is Notation Example Let P(x) = x is a factor of 8, Q(x)= x is a factor of 4 and R(x)= x < 5 and . The domain of x is assumed to be . Use symbols , to indicate true relationships among P(x), Q(x) and R(x). The truth set of P(x) is {1,2,4,8}, Q(x) is {1,2,4}. Since every element in the truth set of Q(x) is in the truth set of P(x), So The truth Set of R(x) is {1,2,4}, which is identical to the truth set of Q(x). Hence . Cont Cont Let Q(x, y) be the statement x + y = x − y where the domain for x and y is the set of all real numbers. Determine the truth value of: (a) Q(5,−2). (b) Q(, 0). (c) Determine the set of all | (CSC 102) Lecture 6 Discrete Structures Previous Lectures Summary Different forms of arguments Modus Ponens and Modus Tollens Additional Valid Arguments Valid Argument with False Conclusion Invalid argument with a true Conclusion Converse and Inverse error Contradictions and valid arguments Predicates and Quantified statements I Today’s Lecture Predicates Set Notation Universal and Existential Statement Translating between formal and informal language Universal conditional Statements Equivalent Form of Universal and Existential statements Implicit Qualification Negations of Universal and Existential statements Predicates A predicate is a sentence which contains finite number of variables and becomes a statement when specific values are substituted for the variables. The domain of a predicate variable is the set of all values that may be substituted in place of the variable Truth Set If P(x) is a predicate and x has domain D, the truth set of P(x) is the set of all elements of D that .

TÀI LIỆU LIÊN QUAN
1    108    3
1    104    7
1    156    2
1    92    2
1    92    2
1    80    3
1    102    4
1    88    2
1    95    1
1    84    2
TÀI LIỆU XEM NHIỀU
13    34663    1841
3    21922    227
25    20141    3862
20    17423    1493
16    17101    2649
14    15271    2623
37    13694    2839
1    13571    447
3    11903    223
23    11189    397
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
3    6    3    01-12-2022
182    3    1    01-12-2022
6    8    1    01-12-2022
35    33    2    01-12-2022
30    9    1    01-12-2022
8    10    1    01-12-2022
99    16    1    01-12-2022
114    14    4    01-12-2022
112    8    1    01-12-2022
6    13    1    01-12-2022
183    6    3    01-12-2022
158    2    1    01-12-2022
128    4    1    01-12-2022
9    192    1    01-12-2022
72    29    1    01-12-2022
110    6    1    01-12-2022
140    6    1    01-12-2022
123    8    1    01-12-2022
10    3    1    01-12-2022
5    5    1    01-12-2022
TÀI LIỆU HOT
3    21922    227
13    34663    1841
3    1804    76
580    3855    352
584    2130    88
62    4885    1
171    4275    642
2    2000    74
51    2784    156
53    3704    180
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.