Bài giảng Đại số tuyến tính: Chương 5 cung cấp cho người học những kiến thức cơ bản về không gian Euclid. Nội dung chính trong chương này gồm có: Tích vô hướng của hai véctơ - Các khái niệm liên quan, bù vuông góc của không gian con, quá trình trực giao hóa Gram – Schmidt, hình chiếu vuông góc, khoảng cách đến không gian con. | Trường Đại học Bách khoa tp. Hồ Chí Minh Bộ môn Toán Ứng dụng ------------------------------------------------------------------------------------- Đại số tuyến tính Chương 5: Không gian Euclid • Giảng viên Ts. Đặng Văn Vinh (9/2008) Nội dung --------------------------------------------------------------------------------------------------------------------------- – Tích vô hướng của hai véctơ. Các khái niệm liên quan. – Bù vuông góc của không gian con. – Quá trình trực giao hóa Gram – Schmidt. – Hình chiếu vuông góc, khoảng cách đến không gian con. Tích vô hướng --------------------------------------------------------------------------------------------------------------------------- Định nghĩa tích vô hướng Tích vô hướng trong R-kgvt V là một hàm thực sao cho mỗi cặp véctơ u và v thuộc V, tương ứng với một số thực ký hiệu (u,v) thỏa 4 tiên đề sau: a. ( u , v V ) (u , v) (v, u ) b. ( u , v, w V) (u v, w) (u , w) (v, w) c. ( R, u , v V ) ( u , v) (u , v) d. ( u V ) (u, u ) 0;(u, u ) 0 u 0 Không gian thực hữu hạn chiều cùng với một tích vô hướng trên đó được gọi là không gian Euclid. . Tích vô hướng ----------------------------------------------------------------------------------------------------- Ví dụ Trong không gian R cho qui tắc 2 x ( x1, x2 ) R2 ; y ( y1, y2 ) R2 ( x, y ) (( x1, x2 ),( y1, y2 )) x1 y1 2 x1 y2 2 x2 y1 10 x2 y2 1. Chứng tỏ (x,y) là tích vô hướng. 2. Tính tích vô hướng của hai véctơ u (2,1), v (1, 1) Giải. 2. Tính tích vô hướng của hai véctơ u (2,1), v (1, 1) là (u, v) ((2,1),(1, 1)) .( 1) .( 1) 10 . Tích vô hướng ----------------------------------------------------------------------------------------------------- Ví dụ Trong không gian P [x] cho qui tắc 2 p( x) a1x 2 b1x c1; q ( x) a2 x 2 b2 x c2 P2 [x]. 1 ( p, q) p( x)q( x)dx 0 1. Chứng tỏ (p,q) là tích vô .