New inequalities similar to Hardy-Hilbert’s inequality

In this paper, we establish a new inequality similar to Hardy-Hilbert’s inequality. As applications, some particular results and the equivalent form are derived. The integral analogues of the main results are also given. | Turk J Math 34 (2010) , 153 – 165. ¨ ITAK ˙ c TUB doi: New inequalities similar to Hardy-Hilbert’s inequality Namita Das and Srinibas Sahoo Abstract In this paper, we establish a new inequality similar to Hardy-Hilbert’s inequality. As applications, some particular results and the equivalent form are derived. The integral analogues of the main results are also given. Key Words: Hardy-Hilbert’s inequality; H¨ older’s inequality; β -function. 1. Introduction If p > 1, 1p + 1 q = 1, an , bn ≥ 0 satisfy 0 1, 1p + 1q = 1, f, g ≥ 0 satisfy 0 1, an ≥ 0 and An = a1 + a2 + . + an , then p ∞ An n n=1 1, f ≥ 0 and F (x) = ∞ x 0 F (x) x 0 f(t)dt, then p dx 0 for k = 1, 2, 3, 4, and lim f (k) (x) = x→∞ 0, for k = 0, 1, 2, 3, 4, then the following inequality holds: 1 − f(1) 2 , then ∞ mα−1 m=1 (m + n)λ 2 , β > 0 such that α + β 1 >− Again, by (), ∞ 1 ρ1 (x)fn (x)dx ∞ − n−λ . g1 (1) = − λ 12 12 (n + 1) 12 1 1 λ−α+1 λ − α + 1 −λ B(α, λ − α) ∞ nα+β−λ−1 − n=1 1 λ + α 12 ∞ nβ−λ−1 , n=1 ∞ nβ−λ−1 . n=1 2 Thus () is valid. This proves the lemma. 3. Main results In this section we prove our main result and derive some particular cases. Theorem Let p > 1, p1 + 1q = 1, 0 2, r + s = n n ∞ ∞ λ, an , bn ≥ 0, An = k=1 ak , Bn = k=1 bk . If 0 0 , take a ˜ n = n− ∞ 1+ε p 1+ε , ˜bn = n− q for n ≥ 1 . Then p1 ˜pn a n=1 ∞ 1q ˜bq n n=1 1 1, A˜m = m k=1 a ˜k > m−1 k+1 k=1 k x− 1+ε p dx = 1 m x− 1+ε p dx = 1 ε q mq −p − 1 . 1 − ε(q − .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.