Complemented invariant subspaces of structural matrix algebras

In this paper, we explore when the lattice of invariant subspaces of a structural matrix algebra can be complemented. We give several equivalent conditions for this lattice to be a Boolean algebra. | Turkish Journal of Mathematics Research Article Turk J Math (2013) 37: 993 – 1000 ¨ ITAK ˙ c TUB ⃝ doi: Complemented invariant subspaces of structural matrix algebras Mustafa AKKURT,1,∗ Emira AKKURT,1 George Phillip BARKER2 Department of Mathematics, Gebze Institute of Technology, Gebze, Kocaeli, Turkey 2 Department of Mathematics, University of Missouri Kansas City, Kansas City, Missouri, USA 1 Received: • Accepted: • Published Online: • Printed: Abstract: In this paper, we explore when the lattice of invariant subspaces of a structural matrix algebra can be complemented. We give several equivalent conditions for this lattice to be a Boolean algebra. Key words: Boolean algebra, structural matrix algebra, invariant subspace, lattice of invariant subspaces 1. Introduction Let V denote a vector space of finite dimension n over a field F . Let L(V ) denote the set of all subspace of V . Then L(V ) is a modular lattice under the operations ∩ and + . If W is a sublattice, it is also modular. Let Hom(V ) denote the algebra of all linear transformations of V onto itself. As usual, Hom(V ) can be identified with Mn (F ), the algebra of all n × n matrices over F . We assume that all algebras contain the identity map, I . Definition Let V be a sublattice of L(V ) and let R be a subalgebra of Hom(V ). We define AlgV = {θ ∈ Hom(V ) : W θ ⊂ W, for every W ∈ V} and LatR = {W ∈ L(V ) : W θ ⊂ W, for every θ ∈ R}. AlgV is a subalgebra of Hom (V ) and LatR is a sublattice of L(V ). In general, the containments LatAlgV ⊇ V and AlgLatR ⊇ R are proper. If equality holds, then V (respectively R ) is called reflexive (see [5]). Let F be a field and let ρ be a reflexive transitive relation on the set N = {1, ., n} for some n ≥ 2 (more information about ρ will be given in Section 2). The set Mn (F, ρ) = {A ∈ Mn (F ) : aij = 0 whenever (i, j) ∈ / ρ} is a subalgebra of Mn (F

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.