Semi-cotangent bundle and problems of lifts

Using the fiber bundle M over a manifold B, we define a semi-cotangent (pull-back) bundle t x B, which has a degenerate symplectic structure. We consider lifting problem of projectable geometric objects on M to the semi-cotangent bundle. Relations between lifted objects and a degenerate symplectic structure are also presented. | Turk J Math (2014) 38: 325 – 339 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Semi-cotangent bundle and problems of lifts Furkan YILDIRIM, Arif SALIMOV∗ Department of Mathematics, Faculty of Science, Atat¨ urk University, Erzurum Turkey Received: • • Accepted: Published Online: • Printed: Abstract: Using the fiber bundle M over a manifold B, we define a semi-cotangent (pull-back) bundle t ∗ B, which has a degenerate symplectic structure. We consider lifting problem of projectable geometric objects on M to the semi-cotangent bundle. Relations between lifted objects and a degenerate symplectic structure are also presented. Key words: Vector field, complete lift, basic 1-form, semi-cotangent bundle 1. Introduction Let Mn be an n-dimensional differentiable manifold of class C ∞ and π1 : Mn → Bm the differentiable bundle determined by a submersion π1 . Suppose that (x ) = (xa , xα ), a, b, . = 1, ., n − m; α, β, . = n − m + 1, ., n; i, j, . = 1, 2, ., n is a system of local coordinates adapted to the bundle π1 : Mn → Bm , i ′ ′ where xα are coordinates in Bm , and xa are fiber coordinates of the bundle π1 : Mn → Bm . If (xa , xα ) is another system of local adapted coordinates in the bundle, then we have { ′ ′ xa = xa (xb , xβ ), ′ ′ xα = xα (xβ ). () The Jacobian of () has components ( ′ (Aij ) = ′ ∂xi ∂xj ) ( = ′ Aab 0 ′ Aaβ ′ Aα β ) . Let Tx∗ (Bm )(x = π1 (e x), x e = (xa , xα ) ∈ Mn ) be the cotangent space at a point x of Bm . If pα are components of p ∈ Tx∗ (Bm ) with respect to the natural coframe {dxα }, . p = pi dxi , then by definition the set of all points (xI ) = (xa , xα , xα ) , xα = pα , α = α + m , I = 1, ., n + m is a semi-cotangent bundle t∗ (Bm ) over the manifold Mn . The semi-cotangent bundle t∗ (Bm ) has the natural bundle structure over Bm , its bundle projection π : .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.