Radical submodules and uniform dimension of modules

We investigate the relations between a radical submodule N of a module M being a finite intersection of prime submodules of M and the factor module M/N having finite uniform dimension. It is proved that if N is a radical submodule of a module M over a ring R such that M/N has finite uniform dimension, then N is a finite intersection of prime submodules. | Turk J Math 28 (2004) , 255 – 270. ¨ ITAK ˙ c TUB Radical Submodules and Uniform Dimension of Modules P. F. Smith Abstract We investigate the relations between a radical submodule N of a module M being a finite intersection of prime submodules of M and the factor module M/N having finite uniform dimension. It is proved that if N is a radical submodule of a module M over a ring R such that M/N has finite uniform dimension, then N is a finite intersection of prime submodules. The converse is false in general but is true if the ring R is fully left bounded left Goldie and the module M is finitely generated. It is further proved that, in general, if a submodule N of a module M is a finite intersection of prime submodules, then the module M/N can have an infinite number of minimal prime submodules. 1. Introduction Throughout this note all rings are associative with identity and all modules are unital left modules. Let R be a ring and let M be an R-module. A submodule K of M is called prime if K 6= M and whenever r ∈ R and L is a submodule of M such that rL ⊆ K then rM ⊆ K or L ⊆ K. In this case, the ideal P = {r ∈ R : rM ⊆ K} is a prime ideal of R and we call K a P -prime submodule of M . For more information about prime submodules of M see, for example, [3]–[8] and [10]. A submodule N of a module M is called a radical submodule if N is an intersection of prime submodules of M . Note that radical submodules are proper submodules of M . Given a submodule N of a module M , a decomposition N = K1 ∩ · · · ∩ Kn in terms of submodules Ki (1 ≤ i ≤ n) of M , where n is a positive integer, is called irredundant 255 SMITH if N 6= K1 ∩ · · · ∩ Ki−1 ∩ Ki+1 ∩ · · · ∩ Kn for all 1 ≤ i ≤ n. In [11], a submodule N of a module M is said to have a prime decomposition if N is the intersection of a finite collection of prime submodules of M . Let N be a submodule of an R–module M such that N has a prime decomposition. Then N will be said to have a normal prime decomposition if .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.